Logo
  • Resources
    • COTS for Space WEBINARS
    • ACCEDE 2022 Workshop on COTS
    • EEE COMPONENTS
    • SPECIFICATIONS / QPLs
    • EVENTS / WEBINARS
    • SPACE TALKS
    • TECH ARTICLES
    • MANUFACTURERS NOTIFICATIONS
  • Laboratory Services
    • LABORATORY STANDARD TESTING
    • NON STANDARD TESTING
    • SILICON CARBIDE -SiC- DIODES
    • CROWDTESTING
    • OPTOELECTRONICS
    • SMALL SATS
    • REPRESENTATIVE PROJECTS / PAPERS
  • Additional Services
    • INDUSTRY 4.0 CYBERSECURITY (IEC 62443)
    • PENETRATION TEST
    • CYBERSECURITY CERTIFIED (CSC)
    • CODE SCORE MATRIX
    • LONG-TERM STORAGE OF WAFERS
    • ELECTRONIC DESIGN
  • Tools
    • COMPARATOR
    • MY DCLs/BOMs
    • STOCKPLACE
  • About Us
  • My Request
  • Sign In
  • Resources
    • COTS for Space WEBINARS
    • ACCEDE 2022 Workshop on COTS
    • EEE COMPONENTS
    • SPECIFICATIONS / QPLs
    • EVENTS / WEBINARS
    • SPACE TALKS
    • TECH ARTICLES
    • MANUFACTURERS NOTIFICATIONS
  • Laboratory Services
    • LABORATORY STANDARD TESTING
    • NON STANDARD TESTING
    • SILICON CARBIDE -SiC- DIODES
    • CROWDTESTING
    • OPTOELECTRONICS
    • SMALL SATS
    • REPRESENTATIVE PROJECTS / PAPERS
  • Additional Services
    • INDUSTRY 4.0 CYBERSECURITY (IEC 62443)
    • PENETRATION TEST
    • CYBERSECURITY CERTIFIED (CSC)
    • CODE SCORE MATRIX
    • LONG-TERM STORAGE OF WAFERS
    • ELECTRONIC DESIGN
  • Tools
    • COMPARATOR
    • MY DCLs/BOMs
    • STOCKPLACE
  • About Us
  • My Request
  • Sign In
Blog Image
ALTER Projects

ExoMars

  • Posted by doEEEt Media Group
  • On January 13, 2020
  • 0

ExoMars Mission

OBJECTIVE:

To further characterise the biological environment on Mars in preparation for robotic missions and then human exploration. Data from the mission will also provide invaluable input for broader studies of exobiology – the search for life on other planets.

Exomars

Exomars image ESA

The programme includes several spacecraft elements to be sent to Mars on two launches. The ExoMars 2016 Trace Gas Orbiter (TGO) and an ESA-built EDM stationary lander called ‘Schiaparelli’ will be launched in March 2016. The TGO will deliver the stationary lander and then proceed to map the sources of methane and other gases on Mars, and in doing so, will help to select the landing site for the ExoMars 2018 rover (to be launched in 2018 on a Russian heavy lift Proton launch vehicle). The TGO features four instruments and will also act as the communication relay satellite for the follow-up rover. In 2018 a Roscosmos-built lander is to deliver the ESA-built rover to the Martian surface.

Exomars 2016

According to plans formulated by December 2009, a NASA Atlas V 421 rocket was to launch the European Trace Gas Orbiter and the Entry, Descent and Landing Demonstrator Module, EDM, in January 2016, to arrive on Mars in nine months with October 2016.

The orbiter would release the lander during its approach to Mars, after which EDM would use a parachute followed by a rocket-powered landing with the help of liquid-propellant engines.

According to the original plans, the 700-kilogram ESA lander was designed to survive on the surface of the Red Planet for around eight sols (Martian days) only on battery power and doing limited science. Later, its lifespan had to be reduced to four sols. However, the primary purpose of the lander was the technical validation of a future European system to conduct a controlled soft landing on Mars. The European lander was proposed to replace an American spacecraft originally considered for this mission.

GET IN TOUCH TODAY!
Have questions? Contact us

Exomars 2018

As of 2009, in April 2018, NASA’s Atlas rocket would launch the European Space Agency’s long-delayed ExoMars rover and a smaller NASA rover (Mars Astrobiology Explorer-Cacher, MAX-C) to look for signs of life on Mars. The rovers were scheduled to land in the same location on the Red Planet in January 2019. Thanks to a highly intelligent navigation system, the mobile robots would travel for several miles across the Martian surface.

The European spacecraft would use ground-penetrating radar to locate subsurface features associated with the past presence of water. It would then drill as deep as two meters below the surface to extract samples for in-situ analysis

TECHNICAL CHALLENGES

In order to be successful ExoMars will require advanced technology in the following areas:

  • Rover systems
  • Landing systems
  • An inflatable braking device
  • Power supply
  • Autonomy and navigation

SCHEDULE

ExoMars 2016

Check here a video where everything looks good in ExoMars
  • Author
  • Recent Posts
doEEEt Media Group
doEEEt Media Group
doEEEt media is the group behind every post on this blog.
A team of experts that brings you the latest and most important news about the EEE Part and Space market.
doEEEt Media Group
Latest posts by doEEEt Media Group (see all)
  • Miniature RF Connectors - April 29, 2025
  • Miniature RF Connectors for high-performance testing - April 24, 2025
  • Space-Grade components available for immediate delivery - April 10, 2025
TAGS: CUSTOMER SUPPORT FOR SPACE APPLICATIONS EEE COMPONENTS MOUNTING EEE PARTS PROCUREMENT ESCC EVALUATION HI-REL MATERIAL PROCESSES QUALIFICATION

Previous Post

Full Authority Digital Engine Control

Next Post

Solar Orbiter
0 comments on ExoMars
Recent Posts
  • Miniature RF Connectors
  • Miniature RF Connectors for high-performance testing
  • Space-Grade components available for immediate delivery
  • Introduction to RD ALFA Microelectronics: Components and Capabilities
  • Managing EEE components for LEO and lower cost space missions
Scroll

doEEEt.com

DoEEEt: Electrical Electronic Electromechanical (EEE) parts database. Find (EEE) components/parts products and datasheets from hundreds of manufacturers.

Privacy Policy and Legal Notice

Copyright

Cookie Policy

Copyright © 2021 ALTER TECHNOLOGY TÜV NORD S.A.U

Company

About us

Contact us

How does doEEEt works? – FAQ

ALTER Laboratory Services

Microwave and RF Testing

Small Sats Testing

COTS components Testing

Authenticity Test