												REVIS	SIONS								
					LTR	LTR DESCRIPTION						DATE			APPROVED						
					A	to 1 sec	Make change to the V _{SL(0)} m to 1.26 V as specified under S section of Table I. Update do to current requirements ro			Synchronization cument paragraphs			10-18	C. SAFFLE							
Prepared	in acc	ordan	ce with	n ASMI	E Y14.24	1											Ve	ndor it	tem dr	awing	
REV																					
PAGE																					
REV																					
PAGE																					
REV STA	TATUS REV		s REV A		A	А	А	Α	А	Α	А	А	А	Α	А	Α	А				
OF PAGE	S		PAG	E	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
			REPARED BY hu H. Nguyen					DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.dla.mil/landandmaritime													
Original d Yነ	ate of /-MM-I		ng		IECKED BY hu H. Nguyen				TITLE - MICROCIRCUIT, LINEAR, 4.5 V TO 60 V WIDE							=					
			PROVED BY homas M. Hess				INPUT SYNCHRONOUS PWM BUCK CONTROLLER, MONOLITHIC SILICON							_							
			sız A		ODE ID		io. 236			DWG NO. V62/13607											
				REV			Α				PAGE 1 OF 14										
							~						0.								

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 4.5 V to 60 V wide input synchronous pulse width modulator (PWM) buck controller microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/13</u>	3607 -	<u>01 X</u>	Ę	
Draw		ce type Case out 1.2.1) (See 1.2		
			(000 1.2.0)	
1.2.1 <u>Device type(s)</u> .				
Device type	<u>e</u> <u>Generic</u>		Circuit function	
01	TPS40170 -E	P 4.5 V to	60 V wide input synchrono	us PWM buck controller
1.2.2 Case outline(s).	The case outline(s) are as sp	pecified herein.		
Outline letter	Number of pins	JEDEC PUB 95	Packad	ne style

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	20	JEDEC MO-241	Plastic quad flatpack no-lead

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
F	Tin-lead alloy (BGA/CGA)
Z	Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 2

1.3 Absolute maximum ratings. 1/

Input voltage:	
VIN	0.3 V to 62 V
M/S	0.3 V to VIN
UVLO	
SW	
BOOT	V _{SM} + 8.8 V maximum
Output voltage:	
HDRV	. V _{SM} to BOOT
BOOT-SW, HDRV-SW (differential from BOOT or HDRV to SW)	0.3 V- to 8.8 V
VBP, LDRV, COMP, RT, ENABLE, PGOOD, SYNC	0.3 V to 8.8 V
VDD, FB, TRK, SS, ILIM	0.3 V to 3.6 V
Grounding:	
AGND-PGND, PGND-AGND	200 mV to 200 mV
Power PAD to AGND (must be electrically connected external to device)	. 0 mV
Electrostatic discharge (ESD):	
Human body model (HBM)	. 1.0 kV
Charged device model (CDM)	
Junction temperature range, (TJ)	
Storage temperature range, (T _{stg})	

1.4 Recommended operating conditions.

Input voltage	1 5 1/	to 60	٧/
input voltage	 4.0 V	10 60	v

1.5 Thermal characteristics.

Thermal metric <u>2</u> /	Case outline X	Units
Junction to ambient thermal resistance, θ_{JA} <u>3</u> /	35.4	°C/W
Junction to case (top) thermal resistance, θ_{JCtop} <u>4</u> /	38.1	
Junction to board thermal resistance, θ_{JB} <u>5</u> /	10.8	
Junction to top characterization parameter, Ψ_{JT} <u>6</u> /	0.5	
Junction to board characterization parameter, Ψ_{JB} $\underline{7}/$	10.9	
Junction to case (bottom) thermal resistance, θ_{JCbot} <u>8</u> /	4.3	

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

- 2/ For more information about traditional and new thermal metrics, see manufacturer data.
- 3/ The junction to ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K-board, as specified in JESD51-7, in an environment described in JESD51-2a.
- 4/ The junction to case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specified JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- 5/ The junction to board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- 6/ The junction to top characterization parameter, Ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- $\underline{7}$ The junction to board characterization parameter, Ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- 8/ The junction to case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specified JEDEC- standard test exists, but a close description can be found in the ANSI SEMI standard G30-88

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 3

2. APPLICABLE DOCUMENTS

AMERICAN NATIONAL STANDARDS INSTITUTE, SEMICONDUCTOR EQUIPMENT and MATERIALS INTERNATIONAL

ANSI SEMI STANDARD G30-88 - Test Method for Junction-to-Case Thermal Resistance Measurements for Ceramic Packages

(Applications for copies should be addressed to the American National Standards Institute, Semiconductor Equipment and Materials International, 1819 L Street, NW, 11 th floor, Washington, DC 20036 or online at https://www.ansi.org)

JEDEC Solid State Technology Association

JESD51	_	Methodology for the Thermal Measurement of Component Packages (Single Semiconductor Device).
JESD51-2a	_	Integrated Circuits Thermal Test Method Environment Conditions – Natural Convection (Still Air)
JESD51-7	_	High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD51-8	_	Integrated Circuits Thermal Test Method Environment Conditions – Junction-to-board
JEDEC PUB 95	-	Registered and Standard Outlines for Semiconductor Devices

(Applications for copies should be addressed to the JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201-2107.or online at https://www.jedec.org).

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

- 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
- 3.5 Diagrams.
- 3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Terminal function</u>. The terminal function shall be as shown in figure 3.
- 3.5.4 <u>Block diagram</u>. The block diagram shall be as shown in figure 4.
- 3.5.5 <u>Simplified application</u>. The simplified application shall be as shown in figure 5.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 4

TABLE I. <u>Electrical performance characteristics</u>. <u>1</u>/

Test	Symbol	Test conditions	Limits				
		<u>2</u> /	Min	Тур	Max		
Input supply							
Input voltage range	Vvin		4.5		60	V	
Shutdown current	I _{SD}	V _{ENABLE} < 100 mV		1	2.5	μA	
Operating current, drives not switching	Ιαα	V _{ENABLE} ≥ 2 V, f _{SW} = 300 kHz			4.5	m/	
ENABLE	_		1		1		
ENABLE pin voltage to disable the device	V _{DIS}				100	۳	
ENABLE pin voltage to enable the device	Ven		600			_	
ENABLE pin source current	IENABLE				410	n/	
8-V and 3.3-V regulators		L			I	1	
8-V regulator output voltage	Vvbp	$V_{\text{ENABLE}} \ge 2 \text{ V}, 8.2 \text{ V} < V_{\text{VIN}} \le 60 \text{ V},$ $0 \text{ mA} < I_{\text{IN}} < 20 \text{ mA}$	7.8	8.0	8.35	V	
8-V regulator dropout voltage, $V_{VIN-VVBP}$	V _{DO}	4.5 V < V _{VIN} \leq 8.2 V, V _{EN} \geq 2 V, I _{IN} = 10 mA		110	210	mʻ	
3.3-V regulator output voltage	Vvdd	$V_{\text{ENABLE}} \ge 2 \text{ V}, 8.2 \text{ V} < V_{\text{VIN}} \le 60 \text{ V},$ $0 \text{ mA} < I_{\text{IN}} < 5 \text{ mA}$	3.2	3.3	3.42	V	
Fixed and programmable UVLO							
Programmable UVLO ON voltage (at UVLO pin)	Vuvlo	V _{ENABLE} ≥ 2 V	878	900	920	m'	
Hysteresis current out of UVLO pin	Iuvlo	$V_{\text{ENABLE}} \ge 2 \text{ V}, \text{UVLO pin} > V_{\text{UVLO}}$	4.0	5	6.2	μA	
VBP turnon voltage	VBPON		3.8		4.4	V	
VBP turnoff voltage	VBPOFF	V _{ENABLE} ≥ 2 V, UVLO pin > V _{UVLO}	3.55		4.1		
VBP UVLO Hysteresis voltage	VBP _{HYS}		175		400	mʻ	
Reference		L			1	1	
Reference voltage	VREF	$T_J = 25^{\circ}C, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$	594	600	606	mʻ	
(+ input of the error amplifier)		$-55^{\circ}C \le T_{J} \le 125^{\circ}C, \ .4.5 \ V < V_{VIN} \le 60 \ V$	585	600	610		
Oscillator		L			I		
		Range (typical)	100		600	kH	
Switching frequency	fsw	$R_{RT} = 100 \text{ k}\Omega, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$	85	100	115		
		$R_{RT} = 31.6 \text{ k}\Omega, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$	270	300	335		
		$R_{RT} = 14.3 \text{ k}\Omega, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$	540	600	670		
Valley voltage	VVALLEY		0.7	1	1.25	V	
PWM gain (V _{VIN} /V _{RAMP})	K _{PWM}	$4.5 \text{ V} < \text{V}_{\text{VIN}} \le 60 \text{ V}$	14	15	16	V/	

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 5

Test	Symbol	Test conditions		Limits		Unit
		<u>2</u> /	Min	Тур	Max	
PWM and duty cycle	·					
Minimum controlled pulse	t _{ON(min)}	$V_{VIN} \le 4.5 \text{ V}, \text{ f}_{SW} = 300 \text{ kHz}$		100	160	ns
		$V_{VIN} \le 12 \text{ V}, \text{ f}_{SW} = 300 \text{ kHz}$		75	130	
		V _{VIN} ≤ 60 V, f _{SW} = 300 kHz		50	80	
Minimum OFF time	toff(max)	V _{VIN} ≤ 12 V, f _{SW} = 300 kHz		170	250	ns
Maximum duty cycle	D _{MAX}	$f_{SW} = 100 \text{ kHz}, 4.5 \text{ V} < V_{VIN} \le 60 \text{ V}$	95%			ns
		fsw = 300 kHz, 4.5 V < V _{VIN} ≤ 60 V	90%			
		fsw = 600 kHz, 4.5 V < V _{VIN} ≤ 60 V	82%			
Error amplifier						
Gain bandwidth product <u>4</u> /	GBWP		7	10	13	MHz
Open loop gain <u>4</u> /	A _{OL}		80	90	95	dB
Input bias current	IIB				135	nA
Output source current	IEAOP	V _{VFB} = 0 V	1.8			mA
Output sink current	I _{EAOM}	V _{VFB} = 1 V	1.9			mA
Programmable soft start		I		L	I	
Soft start source current at V_{SS} < 0.5 V	ISS(source,start)	V _{SS} = 0.25 V	42	52	62	μA
Soft start source current at V_{SS} > 0.5 V	I _{SS(source,normal)}	V _{SS} = 1.5 V	9.2	11.6	13.9	
Soft start sink current	ISS(sink)	Vss = 1.5 V	0.7	1.05	1.36	
SS pin HIGH voltage during fault (OC or thermal) reset timing	Vss(fitH)		2.38	2.5	2.65	V
SS pin LOW voltage during fault (OC or thermal) reset timing	VSS(fltL)		235	300	375	mV
SS pin voltage during steady state	V _{SS(steady_state)}		3.2	3.3	3.55	V
Initial offset voltage from SS pin to error amplifier input	VSS(offst)		525	650	790	mV
Tracking						
Range of TRK which overrides V_{REF}	VTRK(ctrl)		0		600	mV

TABLE I. Electrical performance characteristics - Continued. 1/

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 6

TABLE I.	Electrical performance characteristics - Continued.	<u>1</u> /
----------	---	------------

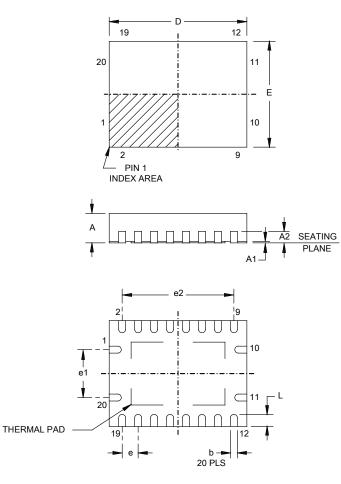
Test	Symbol	Test conditions		Limits		Unit
		<u>2</u> /	Min	Тур	Max	
Synchronization (Master/Slave)						
M/S pin voltage in master mode	V _{MSTR}		3.9		VIN	V
M/S pin voltage in slave 0° mode	VSLV(0)		1.26		1.74	V
M/S pin voltage in slave 180° mode	VSLV(180)		0		0.74	V
SYNC pin pulldown current	I _{SYNC(in)}		8	11	14.5	μΑ
SYNC pin input high voltage level	VSYNC(in_high)	M/S configured as slave- 0° or	2			V
SYNC pin input low voltage level	VSYNC(in_low)	slave- 180°			0.8	V
Minimum SYNC high pulse duration	t _{SYNC(high_min)}		40			ns
Minimum SYNC low pulse duration	tsync(low_min)		40			ns
Gate drivers				1	1	
High side driver pullup resistance	R _{HDHI}		1.37	2.64	4	Ω
High side driver pulldown resistance	Rhdlo	C _{LOAD} = 2.2 nF, I _{DRV} = 300 mA, T _J = -55°C to 125°C	1	2.4	4	
Low side driver pullup resistance	Rldhi		1.25	2.4	4	
Low side driver pulldown resistance	R _{LDLO}		0.44	1.1	1.7	
Time delay between HDRV fall and LDRV rise	tNON-OVERLAP1	$C_{LOAD} = 2.2 \text{ nF}$		50		ns
Time delay between HDRV rise and LDRV fall	t _{NON-OVERLAP2}	$V_{HDRV} = 2 V, V_{LDRV} = 2 V$		60		
Overcurrent protection (Low-side MOSFET sense	sing)	l				1
ILIM pin source current	IILIM	4.5 V < V _{VIN} \leq 60 V, T _J = 25°C	9	9.75	11	μA
		4.5 V < V _{VIN} \leq 60 V, T _J = -55°C to 125°C	6.9		12	
ILIM pin source current during soft start	I _{ILIM,(ss)}	$4.5 \text{ V} < \text{V}_{\text{VIN}} \le 60 \text{ V}, \text{ T}_{\text{J}} = 25^{\circ}\text{C}$		15		1
Temperature coefficient of ILIM current	IILIM, TC	4.5 V < V _{VIN} ≤ 60 V		1400		ppm
ILIM pin voltage operating range	VILIM	4.5 V < V _{VIN} ≤ 60 V	50		300	mV
Overcurrent protection threshold (voltage across low-side FET for detecting overcurrent)	ОСРтн	R _{ILIM} = 10 kΩ, I _{ILIM} = 10 μA (V _{ILIM} = 100 mV)	-110	-100	-84	

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13607	
		REV A	PAGE 7	

Test	Symbol	Test conditions	Limits			Unit
		<u>2</u> /	Min	Тур	Max	
Short circuit protection (High side MOSFET sense	sing)					
LDRV pin maximum voltage during calibration	VLDRV(max)	R _{LDRV} = open		300	360	mV
Multiplier factor to set the SCP based on	A _{OC3}	$R_{LDRV} = 10 \ k\Omega$	2.75	3.2	3.6	V/V
OCP level setting at the ILIM pin	Aoc7	R _{LDRV} = open	6.3	7.25	7.91	
	A _{OC15}	$R_{LDRV} = 20 \ k\Omega$	13.5	16.4	18	
Thermal shutdown	1			1	•	1
hermal shutdown set threshold <u>3</u> / T _{SD,set}		155	165	175	°C	
Thermal shutdown reset threshold <u>3</u> /	T _{SD,reset}	4.5 V < V _{VIN} ≤ 60 V	125	135	145	
Thermal shutdown hysteresis	T _{hyst}	-		30		
Power Good		•		1		1
FB pin voltage upper limit for power good	Vov		620	647	675	mV
FB pin voltage lower limit for power good	Vuv	4.5 V < V _{VIN} ≤ 60 V	520	552	575	
Power good hysteresis voltage at FB pin	Vpg,hyst	-	8.4	20	33	
PGOOD pin voltage when FB pin voltage > Vov or < Vuv, IPGD = 2 mA	VPG(out)				100	
PGOOD pin voltage when device power is removed	VPG(np)	V_{VIN} is open, 10-k Ω to $V_{EXT} = 5 V$		1	1.5	V
Boot diode						
Bootstrap diode forward voltage	Vdfwd	I = 20 mA	0.5	0.7	1	V
Discharge resistor from BOOT to SW	RBOOT-SW			1		MΩ

TABLE I. Electrical performance characteristics - Continued. 1/


1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

<u>2</u>/ These specifications apply for $-55^{\circ}C \le T_{J} \le +125^{\circ}C$, $V_{IN} = 12$ V, unless otherwise noted. <u>3</u>/ Ensured by design, not production tested.

 $\frac{1}{4}$ Ensured by design at -40°C ≤ T_J ≤ +125°C, not production test.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 8

	Dimensions						
Symbol	Millimeters		Millimeters		Symbol	Milli	meters
	Min	Max		Min	Max		
А	0.80	1.00	E	3.35	3.65		
A1	0.00	0.05	е	0.50 BSC			
A2	0.20	TYP	e1	1.50 BSC			
b	0.18	0.30	e2	3.50 BSC			
D	4.35	4.65	L	0.30 0.50			

NOTES:

- 1. All linear dimensions are in millimeters.
- 2. his drawing is subject to change without notice.
- 3. QFN (Quad Flatpack No-Lead) package configuration .
- 4. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- 5. See additional figure in the manufacturer's data for details regarding the exposed thermal pad features and dimensions.
- 6. Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- 7. Falls within JEDEC MO-241 variation AB.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13607
		REV A	PAGE 9

	Case outline X					
Terminal number	Terminal symbol	Terminal number	Terminal symbol			
1	ENABLE	20	UVLO			
2	SYNC	19	VIN			
3	M/S	18	BOOT			
4	RT	17	HDRV			
5	SS	16	SW			
6	TRK	15	VBP			
7	FB	14	LDRV			
8	COMP	13	PGND			
9	AGND	12	ILIM			
10	VDD	11	PGOOD			

FIGURE 2. Terminal connections.

Tern	ninal	I/O	Description
Symbol	number		
AGND	9		Analog signal ground. This pin must be electrically connected to power ground PGND externally.
BOOT	18	0	Boot-capacitor node for high-side FET gate driver. The boot capacitor is connected from this pin to SW.
COMP	8	0	Output of the internal error amplifier. The feedback loop compensation network is connected from this pin to the FB pin.
ENABLE	1	Ι	This pin must be high for the device to be enabled. If this pin is pulled low, the device is put in a low-power- consumption shutdown mode.
FB	7	Ι	Negative input to the error amplifier. The output voltage is fed back to this pin through a resistor- divider network.
HDRV	17	0	Gate-driver output for the high-side FET.
ILIM	12	0	A resistor from this pin to PGND sets the overcurrent limit. This pin provides source current used for the overcurrent-protection threshold setting.
LDRV	14	0	Gate driver output for the low-side FET. Also, a resistor from this pin to PGND sets the multiplier factor to determine the short-circuit current limit. If no resistor is present, the multiplier defaults to 7 times the ILIM pin voltage
M/S	3	I	Master- or slave-mode selector pin for frequency synchronization. This pin must be tied to VIN for master mode. In the slave mode, this pin must be tied to AGND or left floating. If the pin is tied to AGND, the device synchronizes with a 180° phase shift. If the pin is left floating, the device synchronizes with a 0° phase shift
PGND	13		Power ground. This pin must externally connect to the AGND at a single point.
PGOOD	11	0	Power-good indicator. This pin is an open-drain output pin, and a $10-k\Omega$ pullup resistor is recommended to be connected between this pin and VDD.
RT	4	Ι	A resistor from this pin to AGND sets the oscillator frequency. Even if operating in slave mode, it is required to have a resistor at this pin to set the free-running switching frequency.
SS	5	Ι	Soft-start. A capacitor must be connected from this pin to AGND. The capacitor value sets the soft- start time.

FIGURE 3. Terminal function.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13607	
		REV A	PAGE 10	

Terminal I/		I/O	Description – Continued.			
Symbol	number					
SW	16	Ι	This pin must connect to the switching node of the synchronous buck converter. The high-side and low-side FET current sensing are also done from this node.			
SYNC	2	I/O	Synchronization. This is a bidirectional pin used for frequency synchronization. In the master mode, it is the SYNC output pin. In the slave mode, it is a SYNC input pin. If unused, this pin can be left open.			
TRK	6	Ι	Tracking. External signal at this pin is used for output voltage tracking. This pin goes directly to the internal error amplifier as a positive reference. The lesser of the voltages between VTRK and the internal 600-mVreference sets the output voltage. If not used, this pin should be pulled up to VDD.			
UVLO	20	Ι	Undervoltage lockout. A resistor divider on this pin from VIN to AGND can be used to set the UVLO threshold			
VBP	15	0	8-V regulated output for gate driver. A ceramic capacitor with a value between 1 μF and 10 μF must be connected from this pin to PGND			
VDD	10	0	3.3-V regulated output. A ceramic bypass capacitor with a value between 0.1 μ F and 1 μ F must be connected between this pin and the AGND pin and placed closely to this pin.			
VIN	19	Ι	Input voltage for the controller, which is also the input voltage for the dc-dc converter. A 1-µF bypass capacitor from this pin to AGND must be added and placed closed to VIN.			

FIGURE 3. <u>Terminal function</u> – Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13607	
		REV A	PAGE 11	

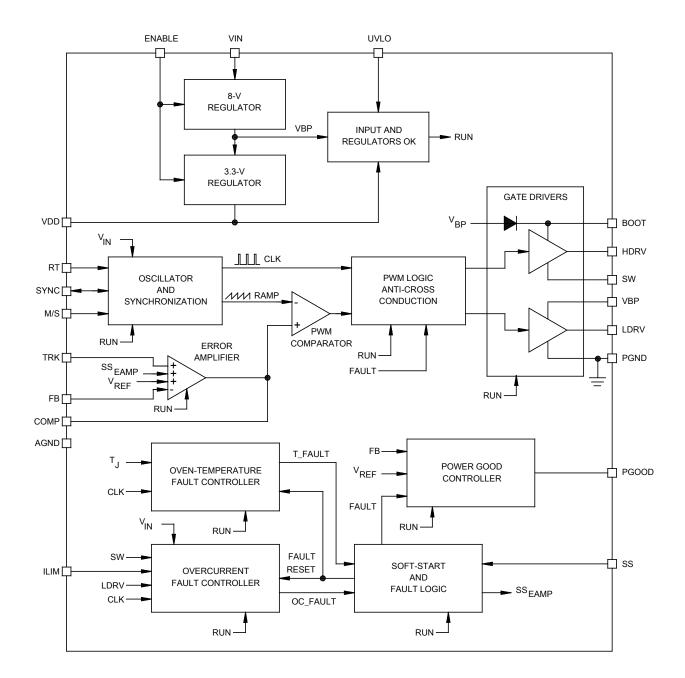


FIGURE 4. Block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/13607	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 12	

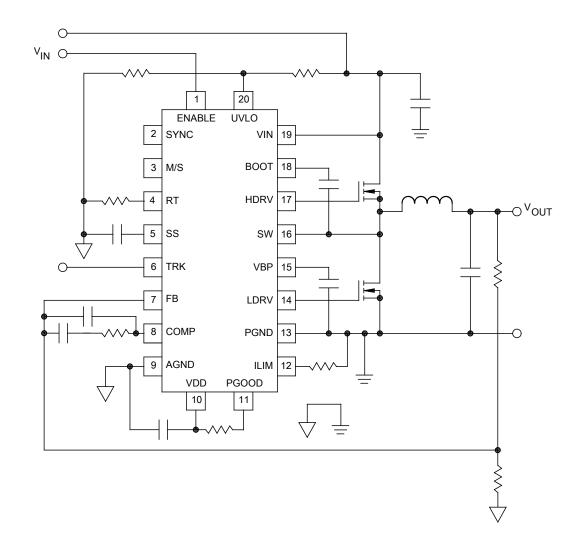


FIGURE 5. Simplified application.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/13607	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 13	

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/programs/smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Mode of transportation and quantity	Top side marking	Vendor part number
V62/13607-01XE	01295	Tape and reel, 250 units	PZYM	TPS40170MRGYTEP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

01295

Source of supply

Texas Instruments, Incorporated Semiconductor Group 8505 Forest Lane P.O. Box 660199 Dallas, TX 75243

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13607	
		REV A	PAGE 14	