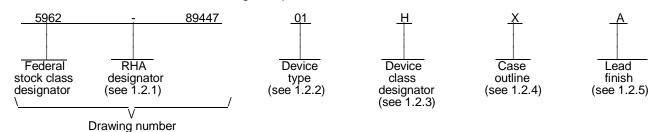
								R	EVIS	ONS										
LTR					D	ESCR	RIPTIO	N					DA	TE (Y	R-MO	-DA)		APPR	OVED)
С	Inac type	tivate 08.	device	types	; 01, 0	5, and	07 for	new o	design	. Add	device	е	98-06-05			ĸ	K. A. Cottongim			
D	400	e I; fo ns to 4 _{:DI-H} tes	450 ns	. Table	e I; fo	r devid	e type	e 08 ch	nange	the ma	ax limi	t for	01-05-18			Ra	Raymond Monnin			
E	corr 2.5 \	ect pa ect pov N. Fig to add	wer dis jure 2,	ssipati termii	on for nal coi	device nnectio	e types	s 01, 0	6, and	08 frc	m 2 V	V to		05-02-22			Ra	Raymond Monnin		
F	Icc1-		om 25	mA to	e maximum limit for I _{CC1} -SB, I _{CC1} -25, I _{CC1} -50, and 07-05-07 A to 60 mA for device type 02. Editorial changes							R	obert I	M. Het	ber					
G	Upd	ated d	rawing	g to the	e lates	t MIL-	PRF-3	8534	require	ements	ssld			14-()6-24		С	harles	F. Sat	fle
Н	Upd	ated d	rawing	g to the	e lates	t requi	iremer	nts of N	MIL-PF	RF-385	534	sld		19-1	12-12		Jam	nes R.	Eschr	neyer
REV SHEET																				
REV	Н	Н	Н	Н	Н	Н	Н	Н												
SHEET	15	16	17	18	19	20	21	22												
REV STATU	S			RE			Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
OF SHEETS	5			SHE			1	2	3	4	5	6	7	8	9	10	11	12	13	14
MICR		UIT		Don CHE	ald R.	D BY Osboi D BY . Hebe	me					C	OLUN	IBUS	, OHI	0 MAF O 432 <u>_anda</u>	218-3		<u>e</u>	
THIS D AV/ FOR U DEPA AND AGEI	THIS DRAWING IS APPF			APPROVED BY William K. Heckman				MICROCIRCUIT, HYBRID, DIGITAL, DUAL CHANNEL, 15 VOLT, DRIVER-RECEIVER, RECEIVER IDLE NORMALLY HIGH												
DEPARTME			NSE	DRA	WING		ROVA 1-26	L DAT	E			1								
AN	ISC N/A	4		REV	REVISION LEVEL H				ZE A		AGE CODE 5962-89447									
										SHE	ET		1	OF	22					
DSCC FORM	1 2222									I			1		22					

DSCC FORM 2233 APR 97


5962-E088-20

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. RHA marked devices meet the MIL-PRF-38534 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

<u> </u>				g transformer rns ratio:
Device types	<u>Generic number</u>	Circuit function	Direct	<u>Transformer</u>
01 <u>1</u> /	ARX3416, ARX3436	Dual channel, driver-receiver receiver idle normally high	1.4:1	2:1
02	NHI-1501	" 5	1.4:1	2:1
03	FC1553622	n	1.4:1	2:1
04	BUS63135II, BUS63136II	n	1.4:1	2:1
05 1/	CT1487-DI	n	1.4:1	2:1
06 2/	ACT4487-DI-002	n	1.4:1	2:1
07 1/	CT1487-DFI	"	1.4:1	2:1
08	ACT4436-DI, ACT4487-DI	II	1.4:1	2:1

1.2.3 <u>Device class designator</u>. This device class designator is a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

Device class	Device performance documentation
К	Highest reliability class available. This level is intended for use in space applications.
Н	Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required.
G	Reduced testing version of the standard military quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C and D).
E	Designates devices which are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affect system performance.
D	Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range.
/ Device types 01 05 and 07 are ob	solete. Device type 08 replaces device types 01, 05, and 07.
/ Device type 06, the generic number	c CT1892-500 is obsolete as of the date of revision B ,generic number 3416-511 is C and generic number ARX3416-002 is obsolete as of the date of revision E.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	2

<u>1/</u> 2/

1.2.4 <u>Case outline(s)</u> . The ca	se outline(s) are as desic	nated in MI	L-STD-1835 a	ind as follows:	
	escriptive designator	Terminal		Package style	
U X Y Z	See figure 1 See figure 1 See figure 1 See figure 1 See figure 1	28 36 36 36	_	Dual-in-line Dual-in-line Flat package Flat package	
1.2.5 Lead finish. The lead	finish is as specified in M	IL-PRF-385	534.		
1.3 Absolute maximum ratir	ngs. <u>1</u> /				
Supply voltage range: V _{CC} (devices 01, 02, 05, V _{EE} (devices 01, 03, 04, V _{CC1} (all devices) Receiver differential voltage Receiver common mode v Driver peak output current Power dissipation (P _D) at (devices 01, 06, and 08) (device 02) (device 03)	$C_{c} = -$ 06, 07, and 08) 05, 06, 07, and 08) oltage range $T_{c} = +125^{\circ}C$: e_{c} ng, 10 seconds) 108) 108	affect reliab	+0.3 \ -0.3 V -0.3 V 40 Vp -10 V 200 m 2.5 W 0.96 V 1.65 V 3 W 2 3.8 W -65°C +300° +167° +145° +160° +145° +160° +150° 88°C/ 8.8°C/ 8.8°C/ 8.8°C/ 60°C/ +14.2 -14.25 +4.5 \ 0 V do 40 Vp -5 V d -10 V 180 m 1.0 M -55°C nent damage ility.	dc to +10 V dc hA N $N \geq 2/$ 2/ to +150°C C C $3/\frac{4}{5}/$ C $3/\frac{5}{5}/$ C $3/\frac{6}{7}/$ C $3/\frac$	peration at the
 2/ One channel transmitting a 3/ Worst case operating juncti 4/ Maximum junction tempera 42°C. 	ion temperature when ca	se is held to	+125°C.	-	v cycle shall be
42°C. 5/ Maximum junction tempera 20°C.	ture rise above case tem	perature for	the hottest di	e at 100% transmitting duty	/ cycle shall be
<u>6</u> / Maximum junction tempera 21°C.	ture rise above case tem	perature for	the hottest die	e at 100% transmitting duty	v cycle shall be
QT A N	DARD		SIZE		
	JIT DRAWING		Α		5962-89447
	ND MARITIME HIO 43218-3990			REVISION LEVEL H	SHEET 3

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard for Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. MIL-HDBK-1553 - Multiplex Applications Handbook.

(Copies of these documents are available online at https://quicksearch.dla.mil/)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.

3.2.3 Timing waveforms. The timing waveforms shall be as specified on figure 3.

3.2.4 Typical transformer connection. The typical transformer connection shall be as specified on figure 4.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	4

3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DLA Land and Maritime -VA) upon request.

3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DLA Land and Maritime -VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

- 4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime -VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) T_A or T_C as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	5

		TABLE I. Electrical performan	nce characteri	istics.			
Test	Symbol	Conditions $1/$ -55°C \leq T _C \leq +125°C unless otherwise specified	Group A subgroups	Device types	Lin	nits	Unit
					Min	Max	
RECEIVER		I	T				T
Input level	VI	Differential input, pin 20 to pin 21, pin 29 to pin 30 <u>2</u> /	4,5,6	All		51	V _{P-P}
Input common mode voltage range	V _{ICM}	Independent of xfmr or in accordance with MIL- HDBK-1553 section 5.1.2.2	4,5,6	01,03,04, 06,08	-5	+5	V(pk)
		HDDR-1555 Section 5.1.2.2		02,05,07	-10	+10	
Output low voltage	V _{OL}	I _{OL} = 4 mA	1,2,3	All		0.5	v
		I _{OL} = 16 mA		04		0.5	
Output high voltage	V _{OH}	I _{OH} = -0.4 mA	1,2,3	All	2.5		V
TRANSMITTER		I	1			1	1
Input low voltage	VIL		1,2,3	All		0.7	V
Input high voltage	VIH		1,2,3	All	2		V
Input low current	IIL	$V_{IL} = 0.4 V$	1,2,3	01,02,03, 06,08	-0.4		mA
				04,05,07	-1.0		
Input high current	I _{IH}	V _{IH} = 2.7 V	1,2,3	All		0.04	mA
Output voltage	Vo	Across 35Ω load	1,2,3	All	6	9	V_{P-P}
Output noise voltage	V _{ON}	Across 35Ω load	4,5,6	All		10	mV_{P-P}
See footnotes at end of ta	ble.					1	1
ST MICROCIR			SIZE A			5962-	89447
DLA LANI	D AND MARI 5, OHIO 432	TIME	1	REVISION LEV H	EL	SHEET	6

	TABL	E I. Electrical performance ch	aracteristics	- Continued.			
Test	Symbol	$\begin{array}{l} Conditions \ \underline{1}/\\ -55^{\circ}C \leq T_C \leq +125^{\circ}C\\ unless \ otherwise \ specified \end{array}$	Group A subgroups	Device types	Lin	nits	Unit
					Min	Max	
RECEIVER STROBE		l					
Input low voltage	V _{SIL}		1,2,3	All		0.7	V
Input high voltage	V _{SIH}		1,2,3	All	2		V
Input low current	I _{SIL}	$V_{SIL} = 0.4 V$	1,2,3	01,06,08	-0.4		mA
				02,04	-0.72		-
				03	-0.7		
				05,07	-1.0		
Input high current	I _{SIH}	$V_{SIH} = 2.7 V$	1,2,3	All		0.04	mA
TRANSMITTER INHIBIT	·					·	·
Input low voltage	V _{IIL}		1,2,3	All		0.7	V
Input high voltage	V _{IIH}		1,2,3	All	2		
Input low current	I _{IIL}	V _{SIL} = 0.4 V	1,2,3	01,02,03, 06,08	-0.4		mA
				04	-0.72		
				05,07	-1.0		
Input high current	I _{IIH}	V _{SIH} = 2.7 V	1,2,3	01,02,03, 04,06,08		0.04	mA
				05,07		0.08	
See footnotes at end of ta	ble.						
	ANDARD		SIZE A			5962-	·89447
DLA LAN	ID AND MARI S, OHIO 4321	TIME		REVISION LEV H	EL	SHEET	7

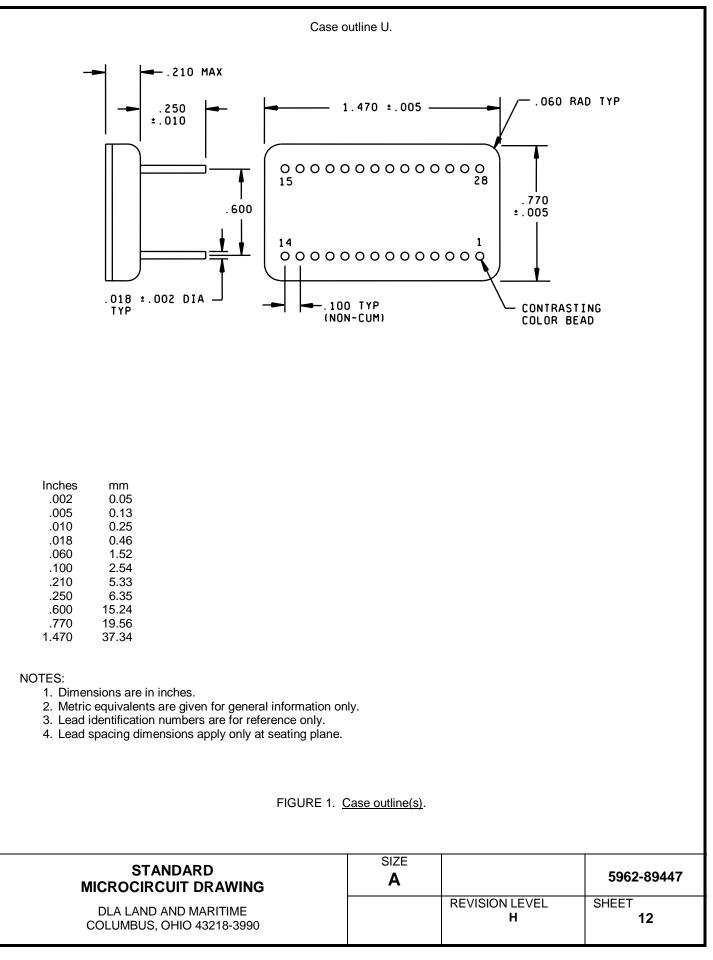
Test	Symbol	$\begin{array}{l} Conditions \ \underline{1}/\\ -55^{\circ}C \leq T_C \leq +125^{\circ}C\\ unless \ otherwise\\ specified \end{array}$	Group A subgroups	Device types	Lin	nits	Unit	
					Min	Max		
POWER SUPPLY	Γ		I			1		
Total Current	I _{cc} -SB	(standby mode)	1,2,3	01,08 02 05,06,07		1 25 22	mA	
	I _{EE} -SB		1,2,3	01,03,08 04 05,06,07		16.5 30 35		
	I _{CC1} -SB		1,2,3	01,08 02 03 04,05,06, 07		30 60 35 45		
	I _{CC} -25	(25% duty cycle into 35Ω load)	4,5,6	01,08 02 05,06,07		55 69 80		
	I _{EE} -25		4,5,6	01,08 03 04 05,06,07		21 15 80 35		
	I _{CC1} -25		4,5,6	01,08 02 03,04,05, 06,07		30 60 45		
	I _{CC} -50	(50% duty cycle into 35Ω load)	4,5,6	01,08 02 05,06,07		110 118 130		
	I _{EE} -50		4,5,6	01,08 03,04 05,06,07		25 130 35		
	I _{CC1} -50		4,5,6	01,08 02 03,04,05, 06,07		30 60 45		
See footnotes at end o	of table.							
	STANDARD CIRCUIT DR/	AWING	SIZE A			5962-	89447	
DLA L	AND AND MARI BUS, OHIO 432 ²	TIME	REVISI		ISION LEVEL SHEE H		T 8	

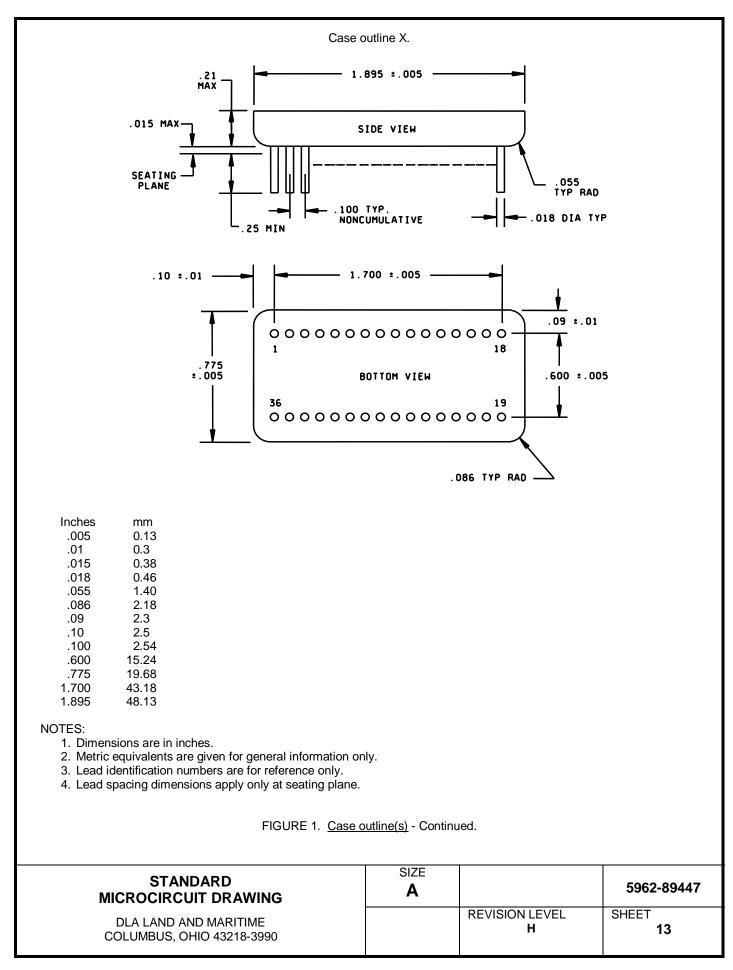
	TABL	E I. Electrical performance ch	aracteristics	- Continued.			
Test	Symbol	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Group A subgroups	Device types	Lin	nits	Unit
					Min	Max	
POWER SUPPLY - Cont	inued.		1				
Total current	I _{CC} -100	(100% duty cycle into 35Ω load)	1,2,3	01,08 02 05,06,07		220 209 240	mA
	I _{EE} -100		1,2,3	01,08 03,04 05,06,07		30 255 35	
	I _{CC1} -100		1,2,3	01,08 02 03 04,05,06, 07		30 60 55 45	
RECEIVER			_				
Input resistance	R _{IN}	1 MHz sine wave	4,5,6	01,02,08 03,04 05,06,07	10 7 9		kΩ
Input capacitance	C _{IN}	1 MHz sine wave <u>2</u> / T _C = +25°C	4	All		5	pF
Threshold voltage	V _{TH}	<u>3</u> /	1,2,3	01,06,08	0.6	1.05	V _{P-P}
				02	0.6	1.10	-
				03	0.6	1.15	_
				04	0.56	1.0	4
				05,07	0.8	1.1	
TRANSMITTER						1	1
Output resistance (transmitter off)	R _{OUT}	1 MHz sine wave 2/	4,5,6	01,02,03, 04,06,08	10		kΩ
				05,07	8		
See footnotes at end of	table.						
			SIZE A			5962-	·89447
MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		TIME		REVISION LEVEL H		SHEET 9	

	TABL	E I. Electrical performance c	haracteristics	- Continued.			
Test	Symbol	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Group A subgroup		Lir	nits	Unit
					Min	Max	
TRANSMITTER - Continued	l.	Ι	-1		Γ	1	T
Output capacitance (transmitter off)	C _{OUT}	1 MHz sine wave $\frac{2}{T_{C}}$ = +25°C	4	All		5	pF
Output offset voltage	Vos	<u>2/ 4/</u>	4,5,6	All		±90	mV(pk)
Peak amplitude variation	A _V	<u>5</u> /	4,5,6	All		±15	%
Zero cross stability	t _{S1}	Across 35Ω <u>2</u> / (See figure 3)	9,10,11	06	1975	2025	ns
	t _{S2}				475	525	-
	t _{S3}				975	1025	-
	t _{S4}				1475	1525	
RECEIVER	1						
Delay time, input to output	t _{DR} Delay time from <u>2</u> differential input zero_ crossing to DATA or D	differential input zero	9,10,11	01,02,03, 04,06		400	ns
		(See figure 3)		05,07		350	
				08		450	_
Strobe delay	t _{DS}	Delay time from strobe <u>2</u> / rising or f <u>alling</u> edge to DATA or DATA	9,10,11	01,03,05, 06,07,08		250	-
		(See figure 3)		02,04		200	
TRANSMITTER							
Rise time	t _R	Output load = 35Ω (See figure 3)	9,10,11	01,02,03, 04,05,07, 08	100	300	ns
				06	100	200	
See footnotes at end of tab	le.						
ST/ MICROCIR	ANDARD CUIT DR/	AWING	SIZE A			5962-	89447
DLA LAND COLUMBUS	and Mari , ohio 432′			REVISION LEVE H	EL	SHEET 1	0

Test	Symbol				Limits		Unit
					Min	Max	
TRANSMITTER - Continu	ed.						T
Fall time	t _F	(See figure 3)	9,10,11	01,02,03, 04,05,07, 08	100	300	ns
				06	100	200	
Delay time inhibiting t_{DT}	t _{DT}	(See figure 3) 2/	9,10,11	01,03,06, 08		350	
				02,04		250	
				05,07		200	
Inhibit delay inhibiting	t _{DI-H}	(See figure 3) <u>2</u> /	9,10,11	01,02,06		200	_
				03,04		450	
				05,07,08		225	
Inhibit delay active	t _{DI-L}	(See figure 3) 2/	9,10,11	01,02,06, 08		200	
				03,04		450	
				05,07		150	

 $1/V_{CC} = 15 \text{ V}, \text{ V}_{EE} = -15 \text{ V}, \text{ and } \text{V}_{CC1} = +5 \text{ V}.$ All specifications and limits are for a single channel with no connections made to the other channel.


2/ This parameter is tested initially and after any design change which might affect this parameter.


3/ Threshold is measured in direct coupled mode including the transformer. Threshold is the maximum level on the BUS at which there are no pulses on either receiver output. Divide by 1.4 to obtain threshold in transformer coupled mode.

 $\frac{4}{2}$ Measured across 35 Ω load, 2.5 μ s after parity bit mid-bit zero crossing of 660 μ s message.

 $\underline{5}/$ Measured across 35 Ω load, variation of average peak amplitude.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	11

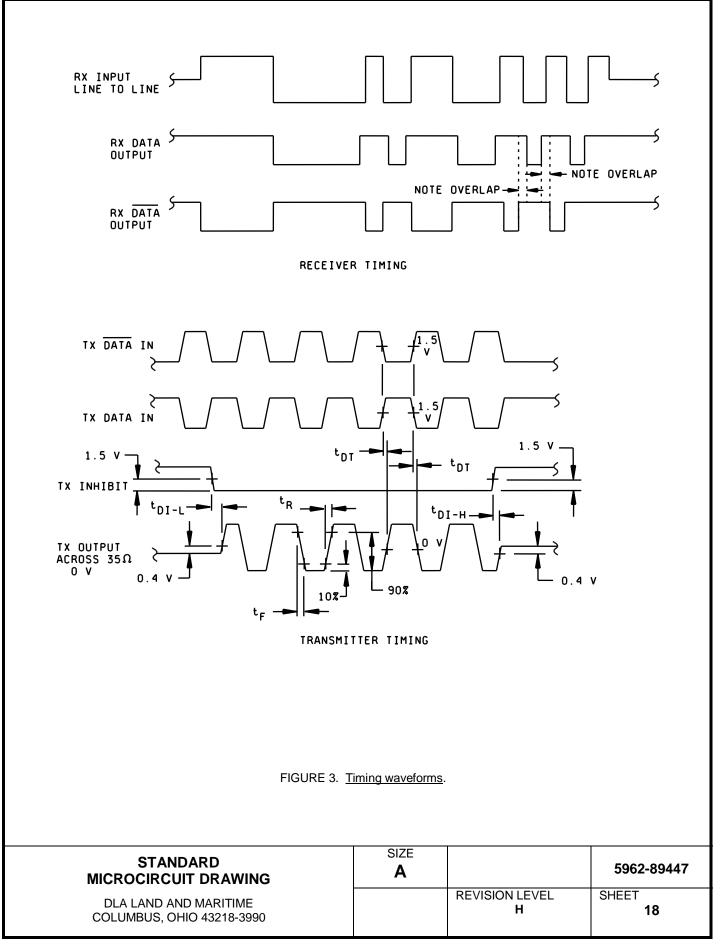
Case o	outline Y.		
1.905 MAX	36	17 EOUAL SPACE AT.100 = 1.700 TOLERANCE NONCUMULATIVE	
.165 MAX .010 ±.002 END VI			
Inches mm .002 0.05 .010 0.25 .015 0.38 .100 2.54 .165 4.19 .250 6.35 .785 19.94 1.700 43.18 1.905 48.39			
 NOTES: 1. Dimensions are in inches. 2. Metric equivalents are given for general information only. 3. Lead identification numbers are for reference only. 4. Lead spacing dimensions apply only at seating plane. 			
FIGURE 1. <u>Case o</u>		nued.	
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL H	SHEET 14

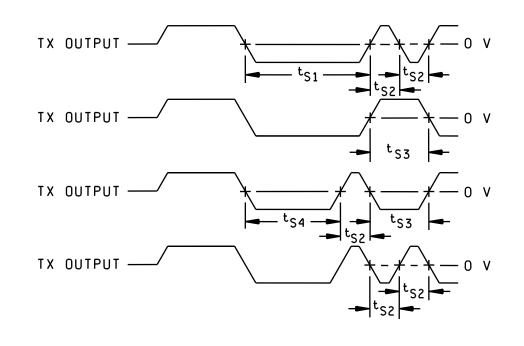
Case	outline Z.		
1.50 MAX 1.50 MAX 28 28 035 RAD (4 PLS)		. 100 TYP 	
. 180 MAX		REF	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
NOTES: 1. Dimensions are in inches. 2. Metric equivalents are given for general information only 3. Lead identification numbers are for reference only. 4. Lead spacing dimensions apply only at seating plane.	<i>'</i> .		
FIGURE 1. <u>Case</u>	<u>outline(s)</u> - Conti	nued.	
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL H	SHEET 15

Case outlines X and Y.

-		1			
	Pin	Function	Channel		
	1 2 3 4 5 6 7 8 9	TX <u>data</u> out TX data out GND or NC NC RX data out Strobe GN <u>D</u> RX data out GND or Case	One One One One One One One One		
	10 11 12 13 14	TX <u>data</u> out TX data out GND or NC NC RX data out	Two Two Two Two		
	15 16 17 18 19	Strobe GN <u>D</u> RX data out NC V _{CC} or NC	Two Two Two Two		
	20 21 22 23	RX <u>data</u> in RX data in GND V _{EE} or NC	Two Two Two Two		
	24 25 26 27 28	V _{CC1} Inhibit TX <u>data</u> in TX data in V _{CC} or NC	Two Two Two Two One		
	29 30 31 32 33	$\begin{array}{c} RX \ \underline{data} \ \mathrm{in} \\ RX \ data \ \mathrm{in} \\ GND \ \mathrm{or} \ NC \\ V_{EE} \ \mathrm{or} \ NC \\ V_{CC1} \end{array}$	One One One One One		
	34 35 36	Inhibit TX <u>data</u> in TX data in	One One One One		
NOTE: GND pins should all be connected types 01, 02, 05, 06, 07, and 08 an only, pins 23 and 32 are V _{EE} for de	id no conr	nects (NC's) for de	vice types 03	and 04. Also for case of	utlines X and Y
	FIGU	RE 2. <u>Terminal c</u>	onnections.		
STANDARD MICROCIRCUIT DRAW	/ING		SIZE A		5962-89447

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	16

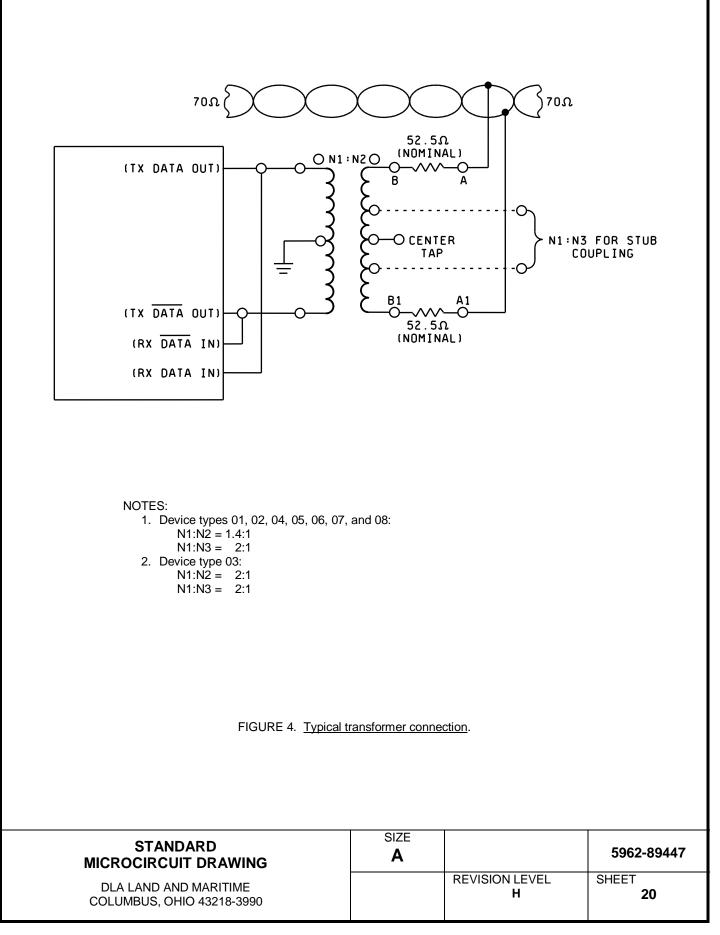

Case outlines U and Z. (Device types 01 and 08).


Pin	Function	Channel
1	TX data out/RX <u>data</u> in	One
2	TX data out/RX data in	One
3	GND	One
4	RX <u>strob</u> e	One
5	RX data out	One
6	RX data out	One
7	Case	
8	TX <u>data</u> out/RX <u>data</u> in	Two
9	TX data out/RX data in	Two
10	GND	Two
11	RX <u>strob</u> e	Two
12	RX data out	Two
13	RX data out	Two
14	No connect	
15	GND	Two
16	V _{EE}	Two
17	V _{CC1}	Two
18	TX <u>inhib</u> it	Two
19	TX data in	Two
20	TX data in	Two
21	Vcc	Two
22	GND	One
23	VEE	One
24	V _{CC1}	One
25	Inh <u>ibit</u>	One
26	TX data in	One
27	TX data in	One
28	V _{cc}	One

NOTE: GND pins should all be connected externally.

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	17



TRANSMISSION ZERO CROSS STABILITY

NOTE: Abbreviated waveform. Above relationships apply during entire transmission.

FIGURE 3. Timing waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	19

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	
Final electrical parameters	1*,2,3,4,5,6,9,10,11
Group A test requirements	1,2,3,4,5,6,9,10,11
Group C end-point electrical parameters	1,2,3
End-point electrical parameters for Radiation Hardness Assurance (RHA) devices	Not applicable

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 7 and 8 shall be omitted.

4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.

- 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime -VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) T_A or T_C as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.
- 4.3.5 Radiation Hardness Assurance (RHA) inspection. RHA inspection is not currently applicable to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	21

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 <u>Sources of supply</u>. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors, listed in MIL-HDBK-103 and QML-38534, have submitted a certificate of compliance (see 3.7 herein) to DLA Land and Maritime-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89447
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		H	22

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 19-12-12

Approved sources of supply for SMD 5962-89447 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DLA Land and Maritime maintains an online database of all current sources of supply https://landandmaritimeapps.dla.mil/programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8944701HUX 5962-8944701HXX 5962-8944701HXX 5962-8944701HYX 5962-8944701HZX	<u>3/</u> <u>3/</u> <u>3/</u> <u>3</u> /	ARX3436-502 ARX3416-001-3 ARX3416FP-001-3 ARX3436FP-502
5962-8944702HXA 5962-8944702HXC 5962-8944702HYA 5962-8944702HYC	<u>3/</u> <u>3/</u> <u>3/</u> <u>3/</u>	NHI-1501/883 NHI-1501/883 NHI-1501FP/883 NHI-1501FP/883
5962-8944703HXA 5962-8944703HXC 5962-8944703HYA 5962-8944703HYC	U4388 U4388 U4388 U4388 U4388	FC1553622 FC1553622 FC1553622FP FC1553622FP FC1553622FP
5962-8944704HXC 5962-8944704HYC	19645 19645	BUS63135II BUS63136II
5962-8944705HXX	<u>3</u> /	CT1487-DI
5962-8944706HXA 5962-8944706HXC	88379 88379	ACT4487-DI-002-2 ACT4487-DI-002-1
5962-8944707HYX	<u>3</u> /	CT1487-DFI
5962-8944708HUA 5962-8944708HUC 5962-8944708HXA 5962-8944708HXC 5962-8944708HXC 5962-8944708HYC 5962-8944708HYC 5962-8944708HZA 5962-8944708HZC	88379 88379 88379 88379 88379 88379 88379 88379 88379 88379	ACT4436-DI ACT4436-DI ACT4487-DI ACT4487-DI ACT4487-DFI ACT4487-DFI ACT4436-DFI ACT4436-DFI

- <u>1</u>/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply. Device type 08 replaces device types 01, 05, and 07.

STANDARD MICROCIRCUIT DRAWING BULLETIN - Continued.

DATE: 19-12-12

Vendor CAGE number	Vendor name and address
U4388	API Microwave, Ltd. Fenner Road, South Denes Great Yarmouth Norfolk NR30 3PX England
19645	Data Device Corporation 105 Wilbur Place Bohemia, NY 11716-2482
88379	Aeroflex Plainview Incorporated, (Aeroflex Microelectronic Solutions) 35 South Service Road Plainview, NY 11803-4193

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

2 of 2