

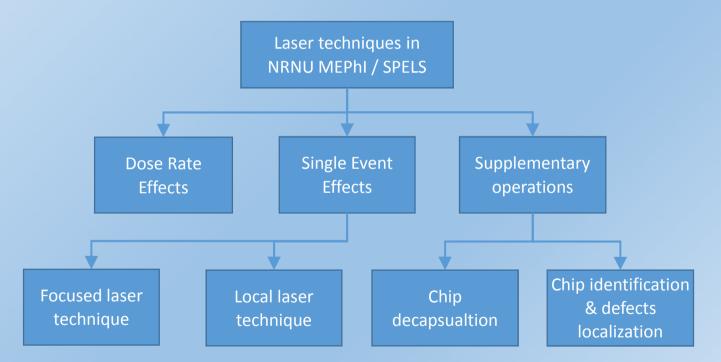
National Research Nuclear University MEPhI Specialized electronic systems Moscow, Russia

The Current State and Perspectives of Laser Radiation Hardness Investigation and Testing Techniques in Russia

Andrey Egorov

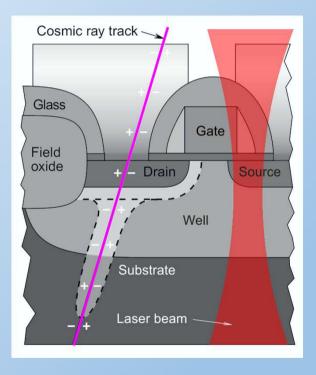
in collaboration with:

A. Chumakov, O. Mavritskii, A. Pechenkin, D. Savchenkov, A. Novikov


Presentation outline

- Classification of laser tests and techniques
- Laser single event effects (SEE) tests
- Laser SEE investigations
- Compendium of laser SEE tests in NRNU MEPhI / SPELS
- Future trends
- Conclusion

Laser techniques for radiation hardness evaluation and testing


In Russia laser techniques are officially allowed to be used for ICs radiation tests

SEVILLE - SPAIN 31st MARCH - 1st APRIL

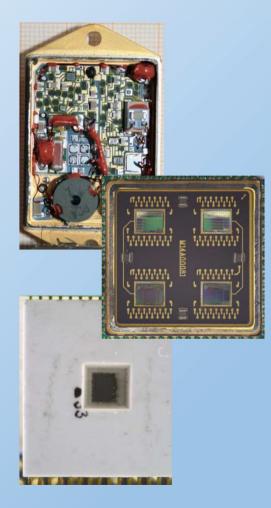
Single event effects

SEE is a serious limitation for the reliability of electronic components, circuits, and systems for space applications

SEEs can be simulated by focused ultra-short pulsed laser beam

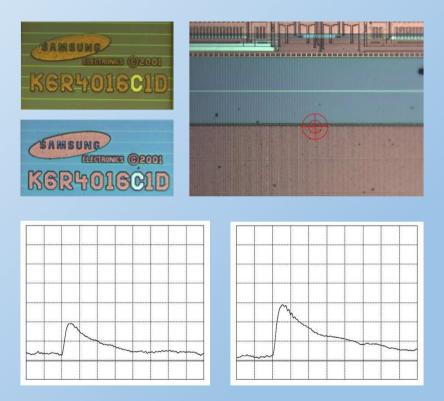
Advantages:

- Lower price
- Easy to implement
- Testing of separate IC elements

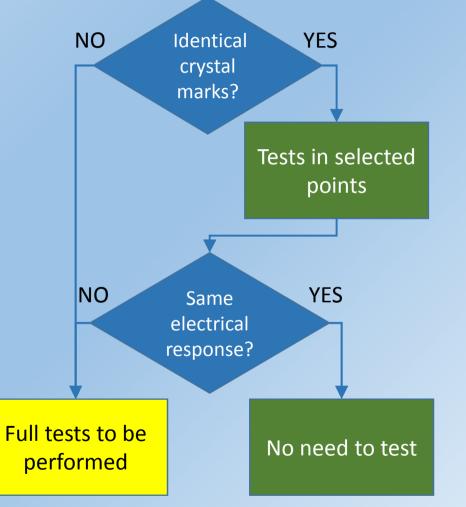

Disadvantages:

- Can't pass through metal layers
- Does not ionize dielectric layers
- Can't be focused to nanosize spot

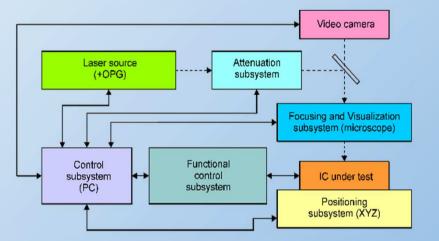
Sample preparation


It is possible to use laser for IC chip decapsulation and preparation:

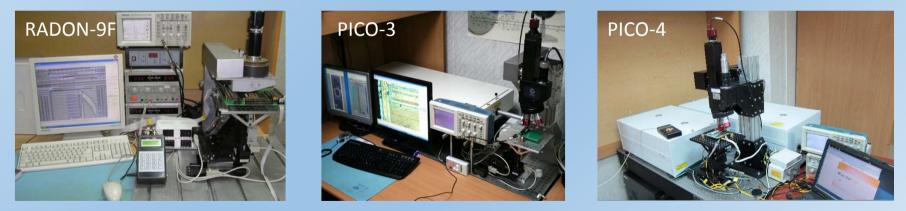
- metal cover removal
- ceramic or plastic package removal
- substrate thinning (for back-side irradiation)



Chip identification –



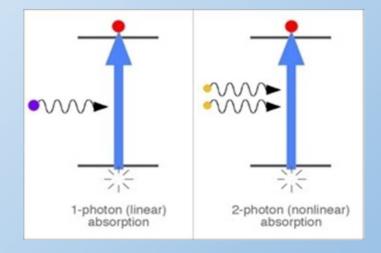
The example of different electrical response to laser irradiation for two chips with identical technological marks.

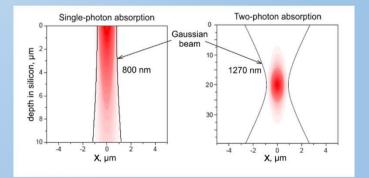


Laser test facilities

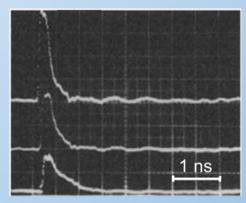
Focused laser system schematic diagram

A.N. Egorov et. al. "PICO-4" Single Event Effects Evaluation and Testing Facility Based on Wavelength Tunable
Picosecond Laser / Radiation Effects Data Workshop (REDW), 2012 IEEE, PP. 69-72.
A.N. Egorov et. al. Femtosecond Laser Simulation Facility for SEE IC Testing / Radiation Effects Data Workshop (REDW), 2014 IEEE, PP. 247-250.

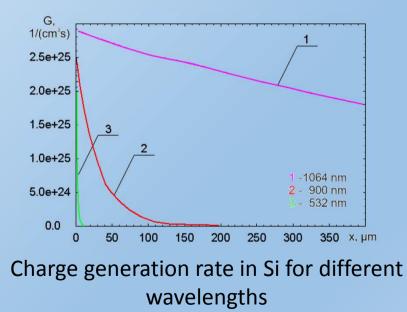

Focused laser facilities: the role and place in SEE research and testing


- Debugging of testing procedures and equipment;
- Ion and laser SEE cross section curves correlation;
- Testing of flip chip ICs;
- SEE sensitive nodes mapping;
- Volt-Ampere characterization of parasitic p-n-p-n structures;
- SEL "Survival" test of ICs;
- Performance check of SEE protection systems;
- SEE test at different temperatures, electric modes, etc.

SEE laser tests principles



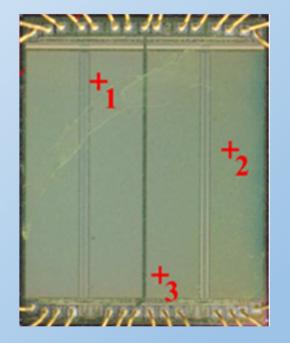
- Laser can produce almost all types of SEEs.
- 2. Two main mechanisms of charge generation:
 - single photon absorption;
 - two photon absorption.
- Spatial distributions of generated
 charge by laser and ions differ, but the
 electrical effects are practically the
 same.



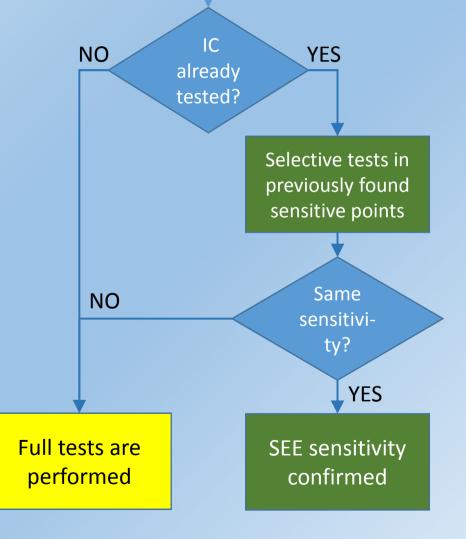
Pulse duration and wavelength

Electrical response in fast opto-switch

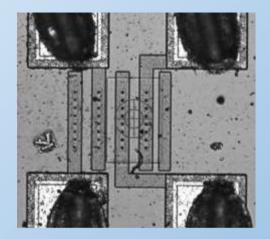
Typical internal response times for modern advanced electronics (shorter than 1 ns) require usage of pico- or femtosecond laser sources.



Commonly used wavelengths for silicon devices:


- ~ 900 nm (front-side irradiation);
- 1064 nm (back-side irradiation);
- 532 nm for SOI technology.

Example of chip sensitive point location



A. Egorov et al. The Current State and Perspectives of Laser Radiation Hardness Testing Techniques in Russia. ©NRNU MEPHI – SPELS 2016

Simple devices

Micron-sized technology One or two metal layers

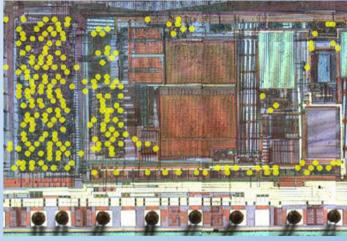
Focused laser approach can be used

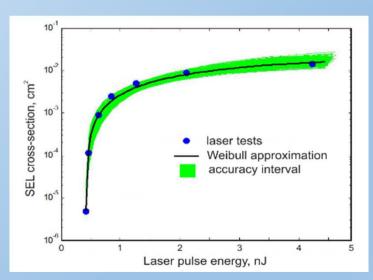
Relation between equivalent LET and laser pulse energy J_l

$$LET \sim 1.8 \cdot 10^4 \cdot \alpha_0 \cdot J_l \cdot \lambda \cdot (1 - R_{\lambda}) / \rho$$

Assumptions:

- Laser intensity does not change along the charge collection length
- Very short laser pulse duration


Chumakov A.I. Interrelation of equivalent values for linear energy transfer of heavy charged particles and the energy of focused laser radiation / Russian Microelectronics, 2011, 40 (3), pp. 149-155


SEVILLE - SPAIN 31st MARCH - 1st APRIL

Complex ICs

SEL map

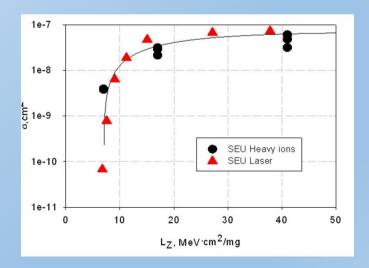
Nano-sized technology Multiple metal layers

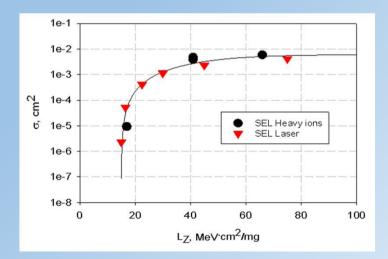
Large and non-uniform optical losses

Scanning the whole chip with laser beam (Weibull curve)

Joint use of laser and heavy ion tests is required to determine laser pulse energy vs. LET correlation

Heavy ion calibration

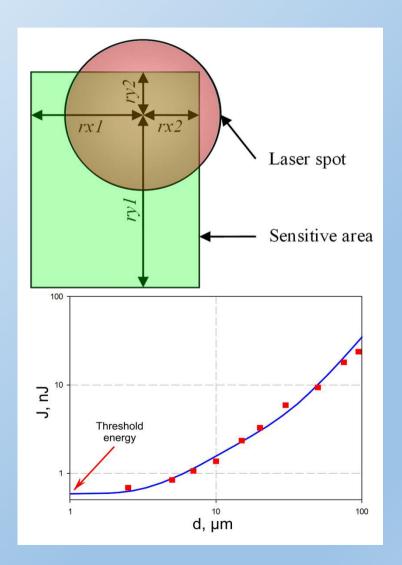


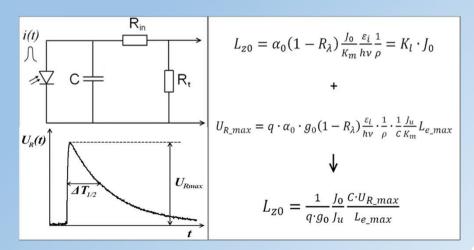

SEVILLE - SPAIN 31" MARCH - 1" APRIL

Roscosmos U-400M isochronous cyclotron (JINR, Russia, Moscow region, Dubna).

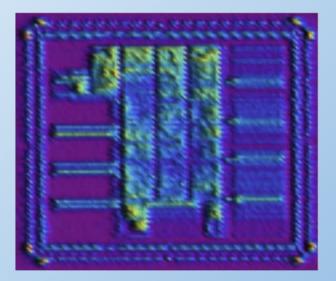
Laser-obtained Weibull curve and heavy ion experimental points are combined to determine LET threshold and cross-section of SEE.

Note: different correlation coefficient between laser energy and LET for different effects in the same IC





Local laser technique


- 1. SEE sensitive region localization by scanning of all chip surface
- 2. Determination of the asymptotic value of the focused laser energy
- 3. The estimation of the optical losses coefficient

Chumakov A.I. et. al. Local Laser Irradiation Technique for SEE Testing of ICs / Proc. Of RADECS, 2011, pp. 449 – 453.

Local laser technique (cont.)

$$L_{z0} = \alpha_0 (1 - R_\lambda) \frac{J_0}{K_m} \frac{\varepsilon_i}{hv} \frac{1}{\rho} = K_l \cdot J_0$$

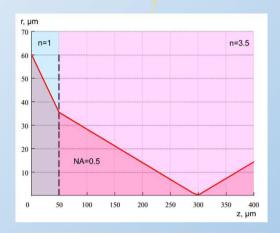
$$+$$

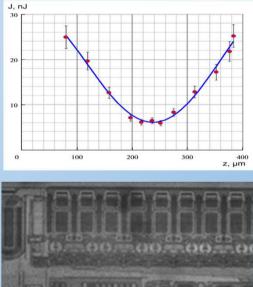
$$U_{R_max} = q \cdot \alpha_0 \cdot g_0 (1 - R_\lambda) \frac{\varepsilon_i}{hv} \cdot \frac{1}{\rho} \cdot \frac{1}{c} \frac{J_u}{K_m} L_{e_max}$$

$$\bigvee$$

$$L_{z0} = \frac{1}{q \cdot g_0} \frac{J_0}{J_u} \frac{C \cdot U_{R_max}}{L_{e_max}}$$

Main problems:


- uncertainty of some IC technology parameters;
- significant optical losses when irradiating from the active layers;
- too much difference in optical losses for various parts of IC.


Possible solutions:

- joint use of laser and pulsed X-ray facilities;
- creating the electrical response map over the whole IC crystal for further results correction;
- using backside irradiation (see next slide).

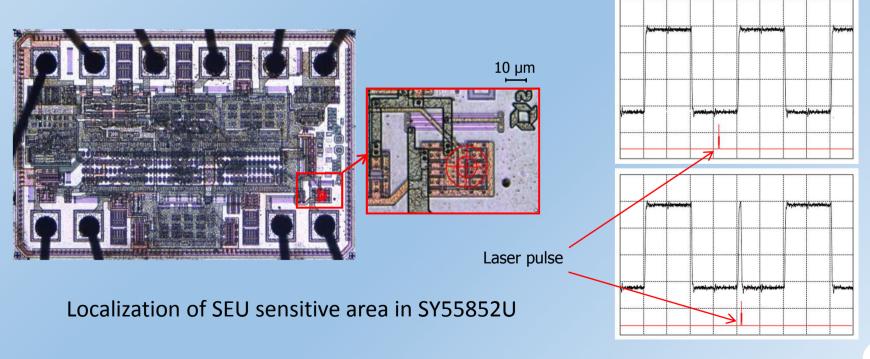
A. I. Chumakov et. al. Single-event-effect sensitivity characterization of LSI circuits with a laser-based and a pulsed gamma-ray testing facilities used in combination / Russian Microelectronics, vol. 41, no. 4, 2012, pp. 221-225.

Backside irradiation

Used when multiple metal layers cover the active layers:

- 1064 nm laser radiation is used for silicon devices;
- both focused and local laser techniques are applicable;
- the change of incident laser beam divergence needs to be taken into account.

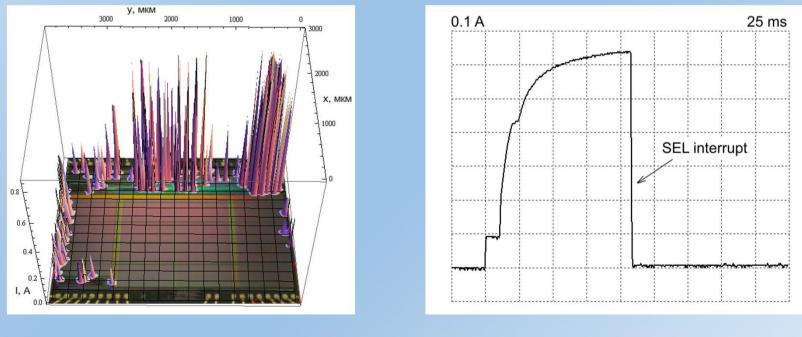
Methods of active layers depth determination:


- SEE threshold energy measurements;
- measurements of electrical response timing and delay;
- back-side visualization with IR-camera (most convenient).

Localization of SEEs

- 1. Scanning the whole chip by moderately focused laser beam with varying energy;
- 2. Testing the occurrence of SEE synchronously with laser excitation;
- 3. Testing at particular moment of timing diagram.

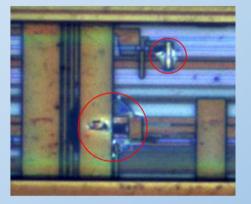
A. Egorov et al. The Current State and Perspectives of Laser Radiation Hardness Testing Techniques in Russia. ©NRNU MEPhI – SPELS 2016

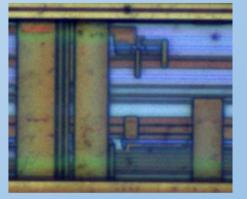

MEPHI SPELS

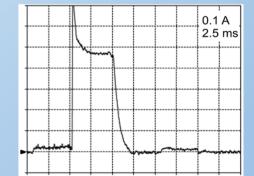
Parry of SEE in electronic board

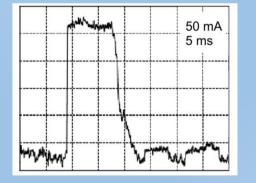
Possible techniques: automatic SEL interrupt, RAM data reservation and coding, etc.

Role of laser:

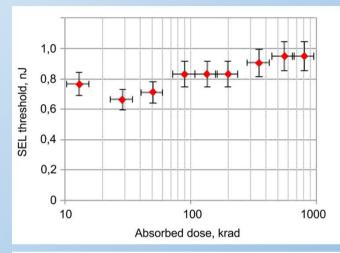

- reproduce the effect;
- find out critical parts of IC and modes of operation;
- helps to develop the technique for particular part of IC.



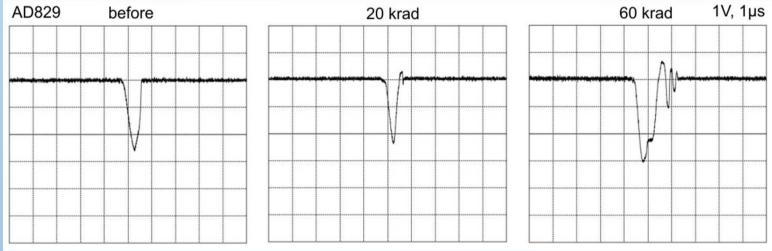



SEL survivability tests

Laser beam initiates the latchup selectively in particular part of IC



Adding the current limiting resistor in power supply circuit enhances survivability (prevents structure damage)

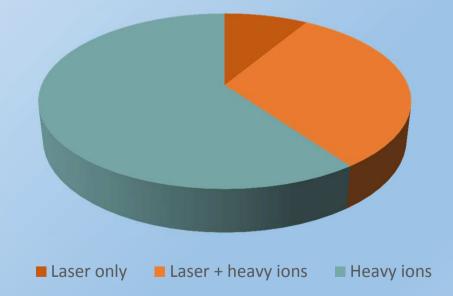

MEPHI SPELS

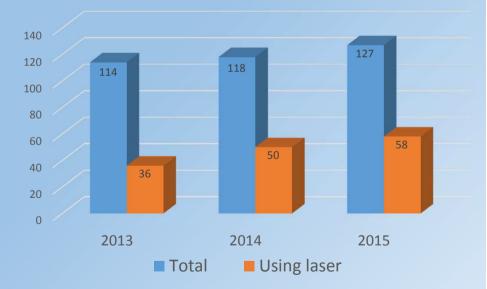
Influence of TID

SEL threshold in test static RAM vs. absorbed dose

A.A. Novikov, A.A. Pechenkin, A.I. Chumakov. The Behavior of SEE Sensitivity at Various TID Levels / 2014 IEEE Radiation Effects Data Workshop, 2014, pp. 151-154.

SET waveform in AD829 is changing while the TID increases





Laser SEE tests in NRNU MEPhI / SPELS

Common structure of SEE tests

Laser tests fraction during last three years

Future trends

The roadmap of further laser techniques development includes:

- utilization of higher harmonics of laser radiation to simulate SEEs in wide bandgap semiconductor devices;
- decreasing the focused laser beam spot size to facilitate laser tests of deep sub-micron technology devices;
- development of two-photon absorption technique using femtosecond lasers;
- laser generation of ultra-short hard x-ray pulses with photon energies sufficient to penetrate through metal layers.

Conclusion

- Laser techniques are developed and widely used in NRNU MEPhI / SPELS for radiation effects simulation in semiconductor devices for space applications.
- 2. In Russia laser techniques are officially allowed to be used for ICs radiation tests.
- 3. Noticeable part of radiation hardness tests performed during last years were made by using laser facilities.
- 4. Laser facilities proved to be a good tool for such operations as SEE localization, sensitivity parameters confirmation, survival tests, sample preparation etc.

THANK YOU FOR YOUR ATTENTION!

Further reading

- 1. R. Velazco, P. Fouillat, and R. Reis, Radiation Effects on Embedded Systems. Dordrecht, The Netherlands: Springer, 2007.
- 2. D. V. Savchenkov, A. I. Chumakov, O. Merkushin, G. G. Davydov, V. A. Marfin, Nonuniform Optical Losses in Laser SEE Tests / Proc. of RADECS, 2015, pp. 147-150.
- M.S. Gorbunov, B.V. Vasilegin, A.A. Antonov, P. N. Osipenko, G.I. Zebrev, V.S. Anashin, V.V. Emeliyanov, A.I. Ozerov, R.G. Useinov, A. I. Chumakov, A. A. Pechenkin, A.V. Yanenko Analysis of SOI CMOS Microprocessor's SEE Sensitivity: Correlation of the Results Obtained by Different Test Methods / IEEE Trans. on Nucl. Sci., 2012, V. NS-59, No 4, P. 1130-1135.
- 4. Pechenkin, A.A., Savchenkov, D.V., Mavritskii, O.B., Chumakov, A.I., Bobrovskii, D.V. Evaluation of sensitivity parameters for single event latchup effect in CMOS LSI ICs by pulsed laser backside irradiation tests / Russian Microelectronics, 44 (1), 2015, pp. 33-39
- Chumakov, A.I., Pechenkin, A.A., Savchenkov, D.V., Yanenko, A.V., Kessarinskiy, L.N., Nekrasov, P.V., Sogoyan, A.V., Tararaksin, A.I., Vasil'Ev, A.L., Anashin, V.S., Chubunov, P.A. Compendium of SEE comparative results under ion and laser irradiation / Proc. of RADECS, 2013, art. no. 6937390.
- Savchenkov, D.V., Chumakov, A.I., Petrov, A.G., Pechenkin, A.A., Egorov, A.N., Mavritskiy, O.B., Yanenko, A.V. Study of SEL and SEU in SRAM using different laser techniques / Proc. of RADECS, 2013, art. no. 6937411.