RADIATION TESTS ON OPTICAL MATERIALS

Stefan K. Höffgen and Jochen Kuhnhenn (Fraunhofer INT)

Radiation Effects in Optical Materials

Overview

- Induced optical loss by color centers
- Density changes (dilatation or competion)
- Induced stress or stress relaxation
- Changes in polarizability
- All of above can result in changes of refractive index
- Fluorescence, luminescence, scintillation, Cherenkov light
- Dielectric breakdown (Lichtenberg figures)

Bulk Optical Materials

Introduction

- Testing usually done step-stress e.g. optical measurements are done outside the irradiation chamber
- Testing of induced absorption sometimes done by irradiation lab. For more specialized measurements
 - Bring your own setup. (might not be feasible)
 - Have the samples sent to optical lab (might need more samples, problem with annealing)
- No irradiation standard for optics, but ISO 15856 covers materials in general
 - Use protons with 2 MeV to 200 MeV and electrons > 0.5 MeV (electrons can be substituted by Co-60 which has no ESD problem)
 - Some materials (e.g. transparent polymers) are very sensitive to oxygen. Irradiate in vacuum (max 10⁻² Pa) or inert gas

Bulk Optical Materials Typical Test Setup

Bulk Optical Materials

Typical Results

Surface Effects

Introduction

- ISO 15856 classifies surface effect up to 4 mg/cm² (about 18 μm SiO₂)
- Surface effects are a problem in environments with high fluxes of low energy particles (e.g. radiation belts)
- Proposed particles protons with energies of 10 keV to 1 MeV and electrons from 10 keV to 500 keV, no Co-60!
- Problem for thin optical films, especially when directly exposed to space

Surface Effects

Irradiation planning for protons

50 keV protons

Surface Effects

Example: Vertically Alligned Carbon Nano Tubes

- VA-CNTs are very effective absorber
- Reflectivities of < 1% are possible over very broad wavelength spectrum (typical black paint has 2% to 4% reflectivity)
- Functionality is dependent on structural integrity of the nano tubes and their surface quality.
- Irradiation up to 1.2 Grad showed no measurable effect (though done with Co-60!)
- Test with 150 keV protons showed effect on reflectivity

Differences to Bulk Glasses

- Optical fibers are optimized for ultra low absorption to guide the light over large distances → small changes in transmission may get significant.
 - Example: 100 m optical fiber @ 800 nm after 1 Mrad.
 - Pure silica fiber: 1 mW → 0.89 mW
 - P-doped fiber: 1mW → 10⁻²⁰⁰ mW
- Testing is usually done online
 - Need for highly stable equipment and environment
 - Need to irradiate exclusively

Typical Irradiation Setup

Optical Fibers Typical Results

Different Test Standards

Parameter	FOTP-64	IEC 60793-1-54	ASTM E1614
Wavelength [nm]	850,1310,1550±20	x±20, 3 dB Breite	250 – 2100
Light Power	1 μW	1 μW	n. a.
Irradiation Source	γ, n, X, e ⁻	Co-60	α, β, γ, p >500 keV
Irradiation Time	7.7 min – 100 min	1000 h (*)	77 min – 167 h
Doserate	0.05 Gy/s – 1.6 Gy/s	0.27 Gy/s	0.2 Gy/s – 1.6 Gy/s
Annealing	> 1000 s	> 15 min	> 3600 s
Fiber Length	100 m	250 m (or shorter)	50 m

What is Room Temperature?

- Standards:
 - FOTP: 21°C 25°C
 - IEC: 20°C 30°C
 - ASTM: 21°C 25°C
 - ESCC: 10°C 30°C
- Is the difference significant?
- Yes! Because small differences of 5 °C can produce a 15% different RIA.

Photobleaching - Still an Issue?

New measurements from Kuhnhenn 2013

Bending Radius of Fiber Spools

- Corning SMF28e
- 1 Gy/s \Leftrightarrow Spool Ø 6 cm
- 2 Gy/s \Leftrightarrow Spool Ø 4 cm

- Strong influence of bending radius on RIA
- OTDR-Messungen showed no significant influence of bending radius before irradiation!

Fiber Bragg Gratings (FBG)

Introduction

- Applications of FBGs:
 - Temperature sensors
 - Strain sensors
 - "Mirrors" for fiber lasers

Fiber Bragg Gratings (FBG)

Examples of Different Technologies

Fiber Bragg Gratings (FBG)

Test Challenges

- Irradiations are done online, as with fibers
- There might be statistical variations from grating to grating due to fluctuations in manufacturing
- Possibility to test large number of FBGs due to multiplexing
- FBGs are strain sensors → strain free setup necessary during irradiation
- FBGs are temperature sensors → irradiate in environment as temperature stable as possible, correct for remaining variations

Thank you for your attention!

Contact:

Dr. Stefan Höffgen

Fraunhofer INT Business Unit "Nuclear Effects in Electronics and Optics"

Appelsgarten 2 52879 Euskirchen Germany

E-Mail: stefan.hoeffgen@int.fraunhofer.de

