

Outgassing of space materials Screening tests for COTS components proposed for space applications

A. Herrera Hernández

herreraha@inta.es

INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL (INTA)

DPO. MATERIALES Y ESTRUCTURAS

Torrejón de Ardoz (MADRID)

Spain

SEVILLA, 7th November 2019

CONTENTS

- I. INTA-OUTGASSING LABORATORY, BRIEF OUTLINE.
- II. OUTGASSING EFFECT DESCRIPTION.
- III. OUTGASSING SOURCES-MATERIALS.
- IV. INFLUENCE OF OUTGASSING ON SPACECRAFT.
- V. OUTGASSING TESTS AND BAKE OUT IMPLEMENTATION.
- VI. STANDARD TEST METHOD APPLICATION: ECSS-Q-ST-70-02C / ASTM E 595.
- VII. OUTGASSING TEST FACILITIES.
- VIII. OUTGASSING TEST DATA AND EVALUATION OF COTS PROPOSED FOR SPACE APPLICATIONS

OUTGASSING LABORATORY

I. INTA-OUTGASSING LABORATORY, BRIEF OUTLINE

INTA Public Research Organism - Ministry of Defence OUTGASSING LABORATORY

ESA -VALIDATED OUTGASSING TEST HOUSE \rightarrow TEST SUPPLIER FOR AEROSPACE FIRMS

Created in 1970 in collaboration with ESRO -ESTEC MATERIALS SECTION (1968)

TESTS FOR EXTERNAL:

TESTS FOR INTERNAL:

INTA SPACE PROJECTS: RAMAN, ATHENA, MAPS MARS, SOPHI, NEWTON...

OUTGASSING LABORATORY

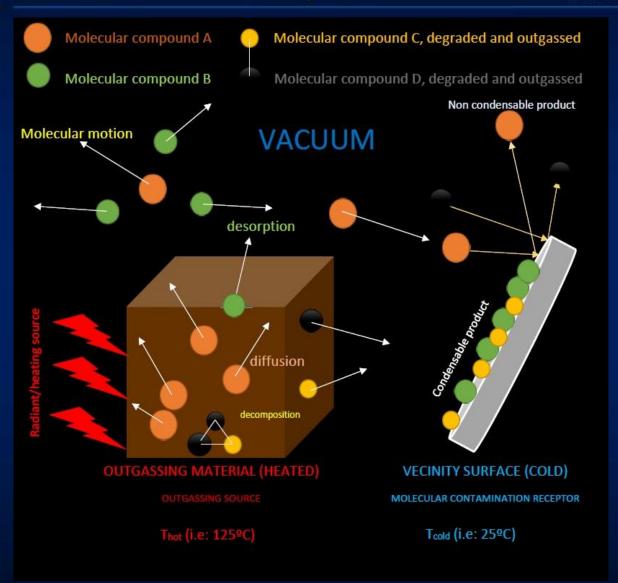
II. OUTGASSING EFFECT DESCRIPTION

OUTGASSING LABORATORY

What is Outgassing....

Release of volatile molecular compounds from a material, contained in it or adsorbed on the surface, due to the exposure to space vacuum environment. It is a process activated and accelerated with the increase of temperature. It is the main effect provoqued by the extreme vacuum (from 10^{-5} - 10^{-7} mbar low orbits, i.e: ISS, to < 10^{-13} mbar deep space)

Space environment:


- Temperature
- Vacuum---
- Radiation-
- Space debris
- Micrometeorites
- Atomic Oxygen

OUTGASSING EFFECT.

(synergistic effect)

Outgassing mechanisms:

Mechanism	Time dep.	E _a (Kcal / mol)
Desorption (Tª ↑)	$t^{-1} - t^{-2}$	1 - 10
Diffusion (Tª ↑↑)	t ^{-1/2}	5 -15
Decomposition (Tª ↑↑↑)	n/a	20 -80

- **Desorption**: molecules adsorbed on the material surface.
- Evaporation/sublimation: change of physic state of material to gas phase.
- Diffusion: random motion within the material of concentrated molecular species.
- Decomposition: chemical reaction on material, generation of outgassing species → diffusion → desorption → release to vacuum (outgassing).
- Permeation: molecular flux can permeate a material, diffuse, and later be released after to vacuum space.

Outgassing mechanisms, analytical approach Desorption Diffusion

$$\frac{dm^{\alpha}}{dt} = -\frac{m^{\alpha}}{\tau_d^{\alpha}(T)}$$

with dm^{α}/dt : weight loss per surface unit of species α (g.cm⁻²·s⁻¹)

 m^{α} : contaminant α available mass per surface unit (g·cm⁻²)

 $\tau_d^{\alpha}(T)$: outgassing time constant of species α (s)

T: temperature (K)

The desorption time constant is thermally activated (Arrhenius law):

$$\tau_d^{\alpha}(T) = \tau_{d0}^{\alpha} e^{-E_d^{\alpha}/RT}$$

with E_d^{α} : desorption activation energy of species α on this material (kJ/mol)

 τ_{d0}^{α} : Arrhenius pre-exponential factor (s)

R : the gas constant (0,00831 kJ/mol·K)

$$\frac{dm}{dt}(t,T) = Cm \frac{\exp^{-E_a/RT}}{\sqrt{t}}$$

$$\frac{\Delta m}{m} = 2C \exp^{-E_a/RT} \left(t_2^{1/2} - t_1^{1/2} \right)$$

$$f(x) = D \frac{dn(x)}{dx}$$

with f: contaminant flux through the material (g·cm⁻²·s⁻¹)

n: the contaminant concentration in the material (g/cm³)

D: the diffusion coefficient (cm²/s)

x : the depth coordinate throughout the material (cm)

OUTGASSING LABORATORY

III. OUTGASSING SOURCES-MATERIALS

Materials outgassing, main sources....

SPACECRAFT SYSTEMS

Structures

Encapsulation /Potting

Conformal coatings

Adhesives

Tapes

Other

- Polymer or macromolecular materials, comprising low relative molecular weight molecules, that can contain concentration of volatile variety of mixed chemical compounds in a complex formulations. Weakness of the linkages between molecular structures in polymers also make them prone to outgassing.
- Certain metallic materials can also outgass, such us Zn that can sublimate under vacuum at heating (150°C) or Cd (100°C), but at lower order of magnitude compared with polymers, metallic depositions can be critical and must be avoided also.

Electronic and microelectronic materials /COTS

- Plastic materials made of complex compounds. Formulations can include i.e : epoxy resin, silicones, urethanes, hardening compounds, accelerators, fillers, flame retardants, couplers, stress relief additives, mold release additives, coloring, and ion—getters among others. LCP with metal treatments.
- Typically proprietary formulation of a specific parts resin (i.e: encapsulating), and various types of additives, which provide the desired properties (i.e: for the packaged device).

Main factors determining outgassing levels, Material processing

Material is not validated itself, validation of particular processing for specific application is required for space use or concrete mission.

- Chemical nature of materials.
- Formulation.
- Manufacturing process.
- Curing parameters / process and other treatments (i.e. baking).
- Environmental conditions/storage.
- Preparation/application methods.

typical chemical compounds outgassed /deposited

epoxy, silicone, polyamide, dyciandiamide, polyurethane, acrylic, fluorocarbons, polycarbonates, acetals, ester compounds, hydrocarbons, water vapour, etc..

- Residual concentration of monomers non reacted after polymerization process.
- Concentration of volatile additive or agent compounds present in the polymer (flame retardant, plastificier, estabilizer agent, hardeners, etc.).
- Contaminants, compounds resulted from chemical reactions, absorbed or trapped during material processing.
- Excess of humidity (water vapour could be critical contaminant)

OUTGASSING LABORATORY

IV. INFLUENCE OF OUTGASSING IN SPACECRAFT

Detrimental effects of outgassing on materials and components

- Degradation of functional properties of materials (i.e : outgassing of functional additives).
- Molecular or chemical contamination on component surfaces, affecting the performance (i.e. degradation of optical, thermal, electrical properties).
- Perturbation of the spacecraft medium (i.e. voltage breakdowns, arcs, heat transfer problems)

OUTGASSING LABORATORY

V. OUTGASSING TEST AND BAKE OUT IMPLEMENTATION

Outgassing testing

Screening outgassing tests

Std. ref.: ECSS-Q-ST-70-02C / ASTM E 595

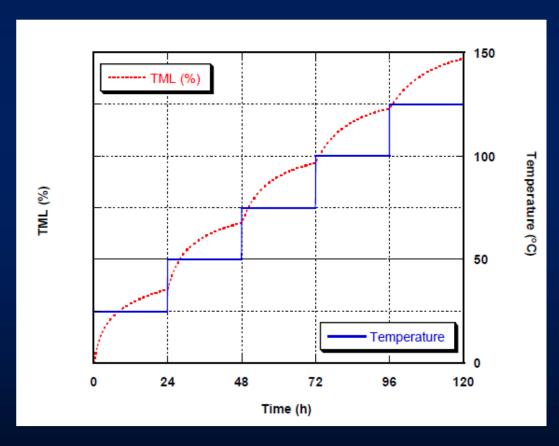
Implementation of general criterium for material acceptance/rejet, in the materials selection step for space application, and reject those with high levels of outgassing. The general standard limits are:

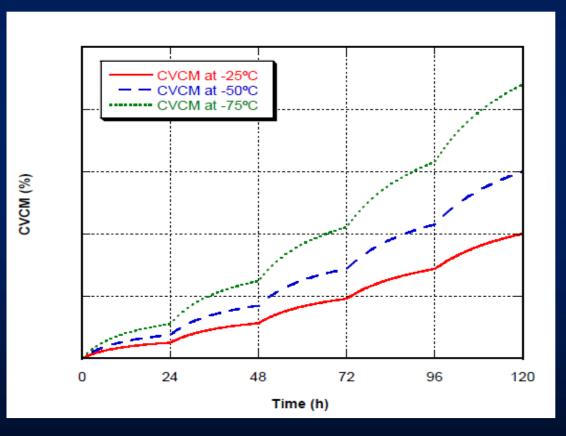
- 1,00% Total mass loss (TML/RML).
- 0,10% sample mass, for Collected Volatile Condensable Material (CVCM).
- More stringent values can be used, for specific critical cases (i.e: in optical applications, CVCM < 0,01%---→ "Ultra Low OutgassingTM requirements" < 0.1 % TML and < 0.01 % CVCM).

The test is performed at one standard temperature of reference: 125°C sample, and 25°C for collector plate for condensables, on samples in the order of 100-300 mg mass.

Mesurement of outgassing/deposition rate characteristics with time, under selected values of different heating sample and cold condensable collector temperatures > outgassing long term predictions. The method include the use of Vacuum balances / QCM Quartz Crystal Microbalances (ESA / ASTM configurations).

Data from this tests allow to compute contamination models and simulate contamination processes in the designed systems, as well as provide further information of outgassing characteristics more than simple data obtained from screening tests.





Outgassing testing Kinetic /dynamic outgassing tests: standard method ESA

Outgassing testing

Bake out under vacuum

The purpose of this activity, is to evacuate the excess of possible volatile compound of the material or molecular contamination on hardware to **reduce or eliminate the potential outgassing** or in a cleaning process for the removal of residual contamination after solvent application (i.e: IPA) or humidity excess. A material or component is heated under vacuum for a certain period of time (normal practice is between to heat **70-125** $^{\circ}$ c under mid – high vacuum , $10^{-2} - 10^{-5}$ mbar , for **72** h or more).

It can be done also in controlled atmosphere.

OUTGASSING LABORATORY

VI. STANDARD TEST METHOD APPLICATION: ECSS-Q-ST-70-02C / ASTM E 595

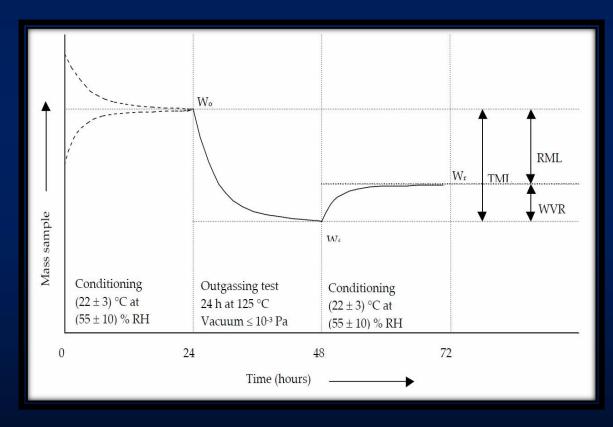
Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595

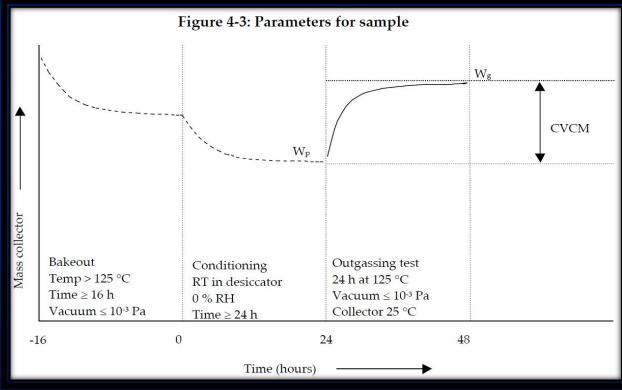
Test standard conditions and data obtained

- SAMPLE MASS: 100-300 mg (metal parts excluded)
- SAMPLE TEMPERATURE: 125°C.
- COLLECTOR COLD PLATE TEMPERATURE: 25°C.
- TEST DURATION: 24h.
- VACUUM PRESSURE: high vacuum range, 10⁻⁶ 10⁻⁷ mbar.
- TEST DATA: TML%, RML%, WVR%, CVCM%, in % of total mass sample tested.
- Application: materials < 50°C operating temperatures (in general). Determination of outgassing properties of material, not intended for outgassing simulation

In order to control the balance of water vapour absorbed/desorbed, samples are conditioned before and after the test at 22°C, 55 HR%, 24h.

SECRETARIA DE ESTADO DE DEFENSA

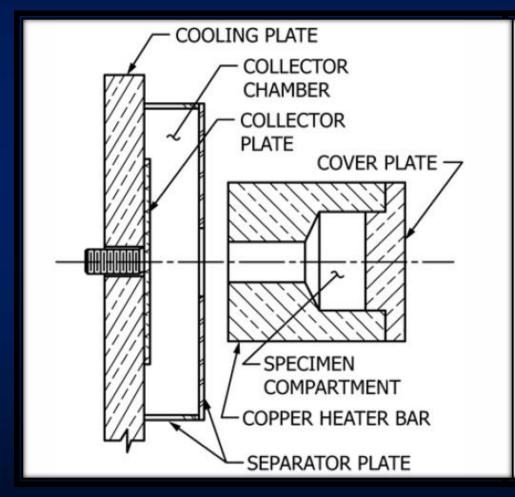


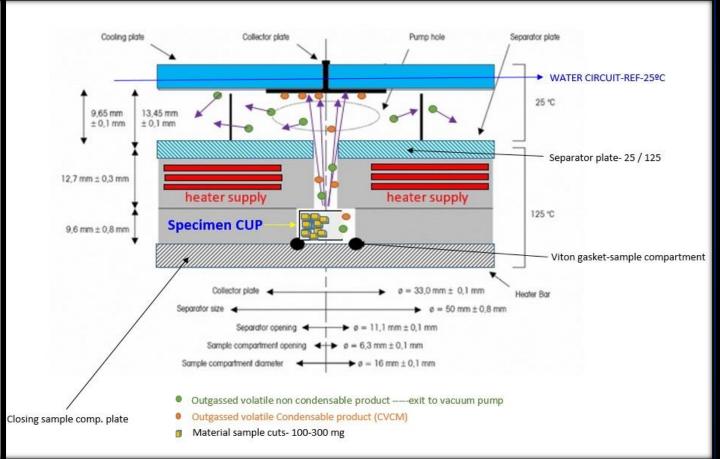


OUTGASSING LABORATORY

Screening outgassing test: ECSS-Q-ST-70-02C / ASTM E 595

Test process illustration




Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595

Test sample configuration

ACCEDE

COTS2019

OUTGASSING LABORATORY

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595

Sample basic preparation

Sample Basic preparation		
TYPE OF SAMPLE	GNRL. PREPARATION 100-300 mg /cup	EXAMPLE / REMARKS
BULK MATERIALS	Small cuts 1-2 mm	Epoxies, silicones, etc
PAINTS / UNIFORM	Rolls 1 cm wide	Aeroglaze paints, primers,
COATINGS		varnishes, sol-gel coats, etc.
FILMS/FOIL/PLATE	Rolls, cuts 2-3 mm side	Kaptons, polymer plates,
MATERIALS/TAPES		etc.
CABLE MATERIALS	Small cuts 1 cm	Space cable/Insulations.
ELECTRONIC	Direct test, for micro	COTS, connectors, electric
COMPONENTS /COTS	components or small	material in general.
	components	
	(20-40 mg per unit).	Plastic material is extracted
		from connectors or E-
المناف المناف المناف	Small cuts, plastic parts	devices, and tested with
	bigger components that can	cutting as bulk materials.
3 specimen cups	not be placed directly inside	3
Ø 10 mm x h 10-12 mm	the cups.	

VII. OUTGASSING TEST FACILITIES

Outgassing test facilities: vacuum technology application

MODEL ESA –Vertical heating –cooling plates ESA – design

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595

Outgassing test facilities

DMAVAC system –vacuum chamber

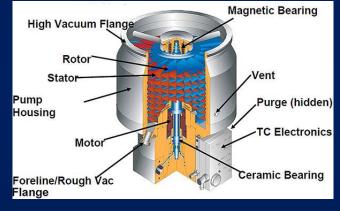
Heating plate- 24 sample cup compartment Room T^a – 200°C

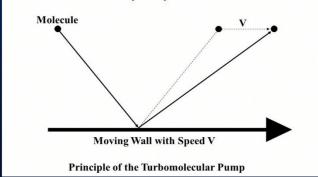
Cooling plate- 24 collector postions 25°C

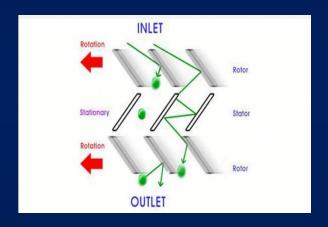
Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595

Outgassing test facilities

Examples of condensable products procuced by outgassed samples (25°C)

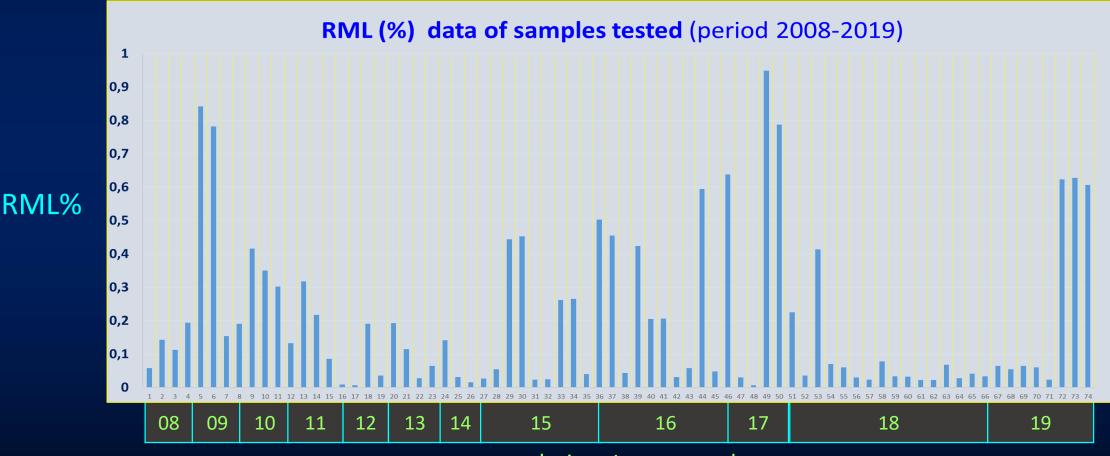



Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595


Outgassing test facilities

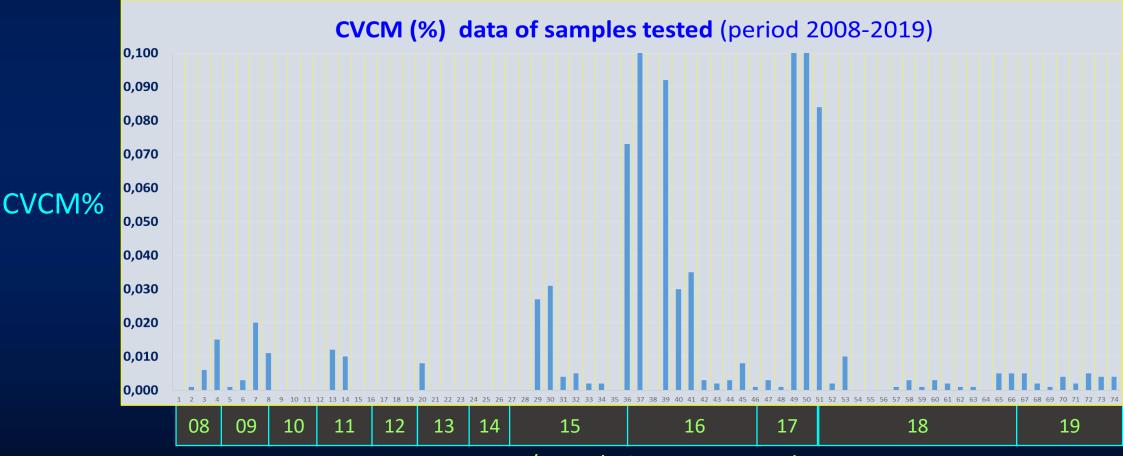
HIGH TEST VACUUM GENERATION: Turbomolecular pump

Mass air suction up to 300 mbar, and kinetic displacement of residual molecules with blade impact under high rpm (830) Hz = 49800 rpm.


OUTGASSING LABORATORY

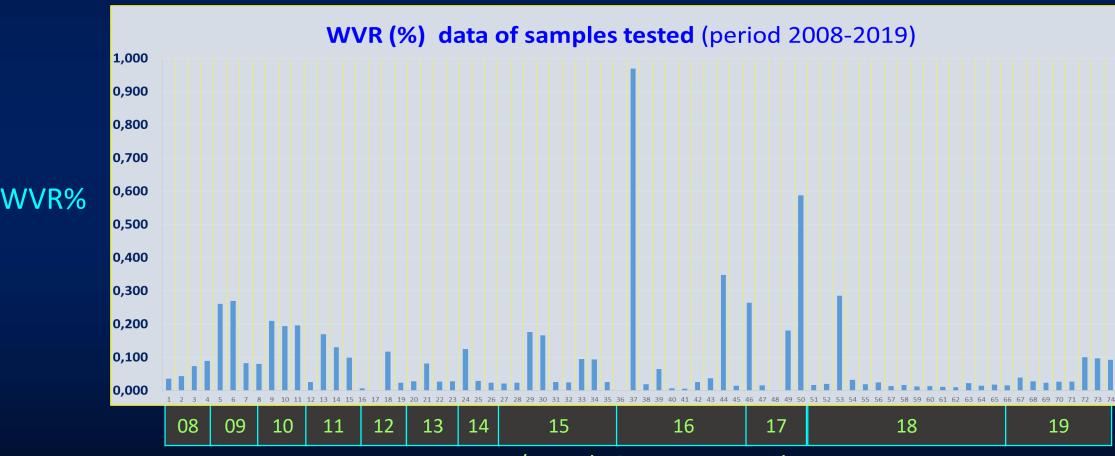
VIII. OUTGASSING TEST DATA AND EVALUATION OF E-COMPONENTS AND COTS PROPOSED FOR SPACE APPLICATIONS

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595 Test experience on several E-components / COTS materials


population Item tested

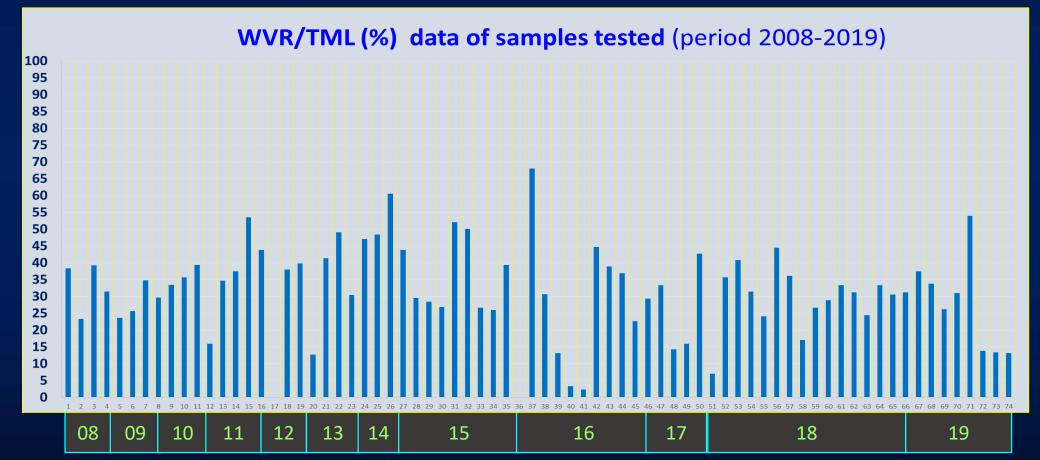
OUTGASSING LABORATORY

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595 Test experience on several E-components / COTS materials


Year / population Item tested

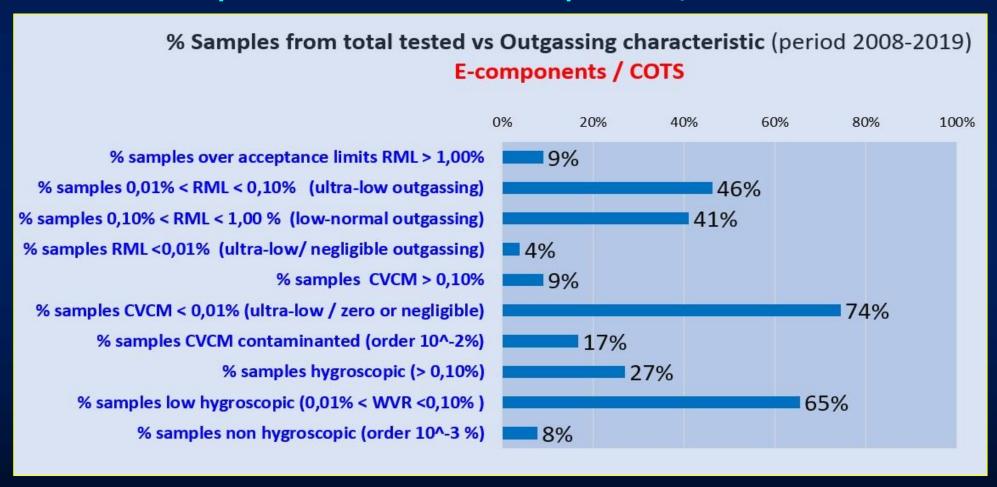
OUTGASSING LABORATORY

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595 Test experience on several E-components / COTS materials


Year / population Item tested

OUTGASSING LABORATORY

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595 Test experience on several E-components / COTS materials


Year / population Item tested

INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL

Screening outgassing test ECSS-Q-ST-70-02C / ASTM E 595 Test experience on several E-components / COTS materials

OUTGASSING LABORATORY

THANKS FOR YOUR ATTENTION!!

