Experience with COTS on ADPMS unit

06 November 2019 – J. De Hert – QinetiQ Space
Agenda

1. Company Introduction
2. ADPMS Introduction
3. Why COTS?
4. Examples
5. Conclusion
Company Introduction

- Founded in 1969 as product developer
- Space activities started in 1983
- Delivered 100+ systems and sub-systems for manned space stations, satellites and interplanetary missions
- Acquired by the QinetiQ group (UK) in 2005
- 170 highly educated specialists employed
- 2 sites in Belgium
- 450m² cleanroom

QinetiQ Space Ground Station
- Located in Belgium, Redu
- ESA satellite ground station
- Jointly operated with SES Astra

QinetiQ Space
- Located in Belgium, Kruibeke
- Offices: 3.742 m², Warehouses: 1.200 m²
- 2 Class 100.000 cleanrooms
Company Introduction

Satellites & Platforms Scientific Payloads Subsystems Downstream services
ADPMS Introduction

- **ADPMS : Advanced Data and Power Management System**
 - Dual lane computer and power system
 - Modular digital boards
 - Intended for platform computer

- **Onboard computer for Proba satellites**
 - Design started in 2000
 - Flight heritage on Proba-2 and Proba-V (16 combined years in orbit)
 - Flight units ready for Proba-3
 - Spin-off used on IXV

- **Parts Usage**
 - General class 3 level parts
 - About 20 different types of commercial COTS parts used on a total almost 300 parts
 - Design predates the ECSS-Q-ST-60-13C
Why COTS?

• Because of functional reasons (No suitable FM equivalent available)
 – However market and availability evolves
 – Several components could now be replaced by MIL / ECSS / Hi-rel parts
 – But, unless replacement is size/function compatible, risk of change is considered too high
 – Very dense PCBs prevent updating without complete redesign
 – Loss of flight heritage / qualification
 – excellent performance of most COTS parts in space

• NOT because of cost reasons
 – Component parts cost is lower however
 – Upscreening costs
 – Parts approval flow (repeated for each project)
 – Radiation testing when applicable
 – Solder qualification
 – (relifing)
 – Difficult to assess total cost at start of project
 – Accumulated cost of PAD discussions and extra tests over consecutive projects
 – Obsolescence, manufacturer changes or batch variability (no long term assurance)
Why COTS?

• Design concept
 – cPCI compliant modular boards and backplane with rear-IO
 – Multiple types of cPCI connectors

• PCB space constraints
 – Decoupling of CCGA /MCGA devices
 – 0402 ceramic capacitors
 – Large value / small size ceramics
 – Qualified parts too large to accommodate
 – SOT23 plastic package dual schottky diode

• Functionality and performance
 – Memories required for LEON processor
 – Commercial SRAM and FLASH
 – Low power analog housekeeping
 – ADC, OPAMP and instrumentation amplifier
Design concept : cPCI connectors

• Part selection and Qualification
 – Initially parts from Tyco were selected with Sn/Pb leads
 – For each FM lot a press-fit qualification campaign was required
 – Extensive Lot acceptance testing, structural analysis performed

• Lessons learned
 – Standard PCB manufacturing with hot-oil reflow finish not ideal for press-fit mounting due to tolerance restrictions.
 – Due to obsolescence change required to other manufacturer (Harting)
 – Different tolerances and small dimension differences caused damaged connectors and pins
 – Same type of connector but internal construction is significantly different between manufacturers.

• Current status
 – cPCI equivalent connectors for space are available but limited choice and no reliable intermateability with other brands can be warranted.
PCB space constraints: Ceramic capacitors

- Part selection and upscreening
 - Commercial “Hi-rel” 0402, 0805 and 1206 caps from Kemet
 - Procured with traceability from authorized distributor
 - Manufacturer test level “C”
 - SnPb finish

- Lessons learned
 - Solder qualification and operational performance successful
 - Lifetime issues, solderability decreases
 - Solderability failed in reusing previous flight lot, new procurement required
 - Sourcing new SnPb COTS parts difficult with increased lead time (non standard product)

- Current status
 - 0402 size capacitors are now available from European space-qualified manufacturers
 - High lead time and considerable higher cost than MIL CDR types
 - Used in new designs requiring class 3 or better.
PCB space constraints: SOT23 plastic package dual schottky diode

• Part selection
 – Multiple small signal schottky diodes required on small space
 – Space qualified single diodes available but FM package too large
 – Initial part from ON-semi selected

• Lessons learned
 – Obsolete ON-Semi Flight batch failed 7-year relifing
 – Same BAS40-04 component from Infineon selected as replacement
 – Solder qualification required for all new batches of plastic parts
 – No issues for the older On-Semi part
 – Initial solder qualification of Infineon part failed due to difference in lead
 – Obsolescence and differences between commercial parts resulted in an unexpected cost and delay.

• Current status
 – Still a need for small diode packages
 – New designs with no COTS use more PCB area for same configuration
Functionality and performance: Memories

• Part selection and upscreening
 – Components were selected because some radiation data was already available
 – COTS memories have a short market lifetime. Large number was purchased. FM assembly uses only a few but quantities for upscreening and testing are significant.
 – Solder qualification required on each lot of plastic parts
 – Radiation test cost is extensive
 – Total dose testing
 – Single event latchup testing
 – Single event effects testing (SEU, SEFI)
 – In some cases proton SEE testing was required (sensitive part)

• Lessons learned
 – Combining all test costs the memories become the most expensive parts
 – Quick obsolescence and short lifespan of non hermetic plastic parts is a project risk and eventually limits the time a design can be reused.
 – Beware of variations in a “single lot” COTS parts

• Current status
 – For new projects external qualified devices (e.g. 3D-plus) are preferred
Functionality and performance : Analog Frontend

• Part selection and upscreening
 – Core is a radhard RTAX FPGA
 – Power conditioning with radhard parts
 – Critical parts for analog acquisition however are all COTS
 – Low speed ADC with SPI interface
 – Opamp
 – Instrumentation amplifier
 – Several high precision resistor divider arrays

• Lessons learned
 – To date no degradation is notable on the DAM housekeeping telemetry on both the Proba-2 and Proba-V satellites
 – No SEFI detected over the years for the ADC

• Current status
 – Qualified devices available on the market
Conclusion

• COTS can be successfully used in space
• Risk of obsolescence
• Significant differences between batches and manufacturers
• Upscreening costs per part are very high for small series

COTS comes with a COST