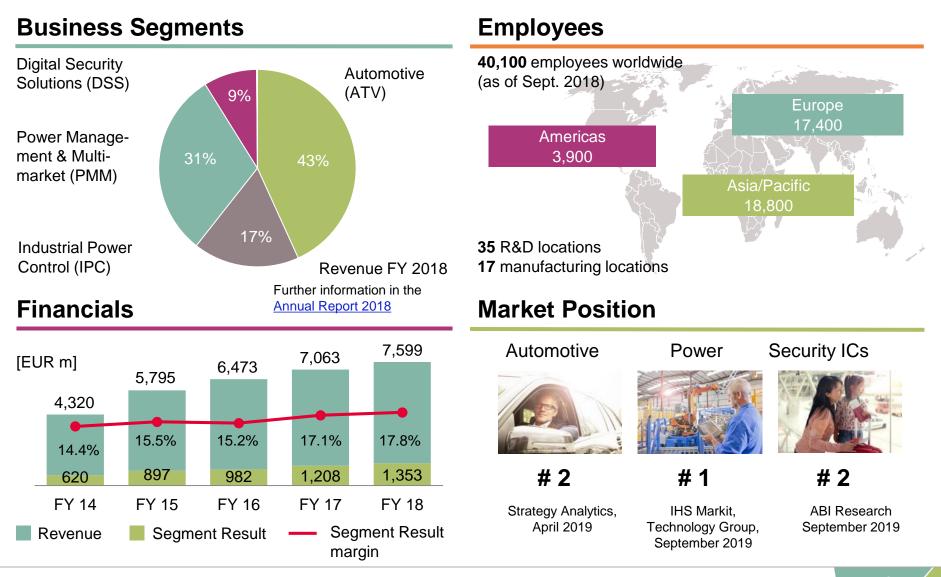

Mission Profile Evaluation for Automotive Applications

An Anthology of Best Practices

Semyra Vasquez-Borucki Infineon Technologies AG



Mission Profile Evaluation for Automotive Applications

Mission Profile Evaluation for Automotive Applications Infineon at a glance

2019-10-23 restricted

Copyright © Infineon Technologies AG 2019. All rights reserved.

Infineon Proprietary

Mission Profile Evaluation for Automotive Applications High Reliability (HiRel) Semiconductor Solutions from Infineon

Some applications need a high level of reliability!

Infineon (former Siemens Semiconductor) is an expert in handling special requirements and has an excellent reputation in the space community for over 40 years!

- Infineon world wide customers value the high quality of the devices and appreciate the expertise in development and production.
- The space heritage covers more than 1500 Satellites/Missions. Lifetime up to 15 years without any failure
- > There are already more than 200 000 Infineon HiRel components in Space.
- The product range covers Radiation Hard PowerMOS Transistor MW-Transistors, Diodes and PIN–Diodes
- > Link to webpage: www.infineon.com/space

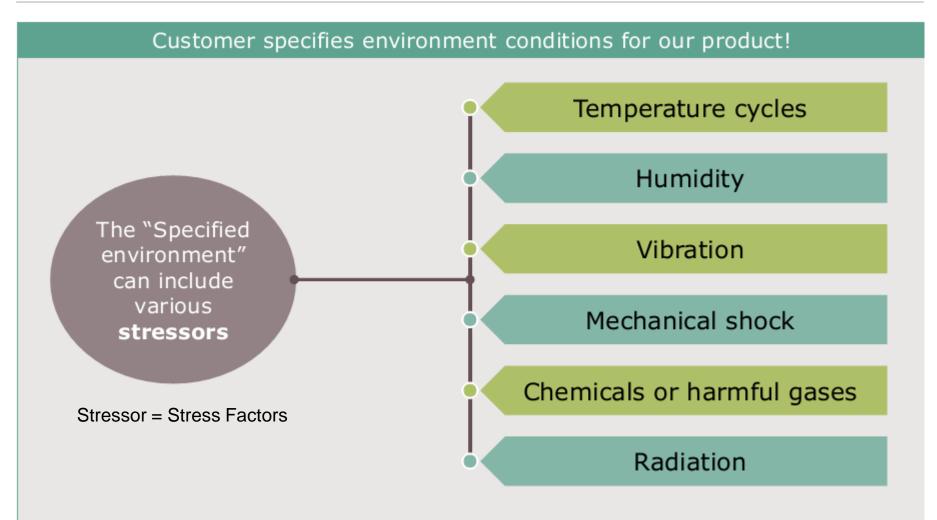
Slide provided from W. Kuebler

Mission Profile Evaluation for Automotive Applications AEC Q100 Rev. H

- > Failure Mechanism Based Stress Test Qualification for Integrated Circuits
- Connect operating mission profile to a temperature grade
- Introduce section "Method to Assess a Mission Profile"
 - Demanding loading profile
 - Extended service lifetime requirement
 - More stringent failure rate target over lifetime
 - 1.3.4 Definition of Part Operating Temperature Grade

The part operating temperature grades are defined in Table 1 below:

<u>Grade</u>	Ambient Operating Temperature Range
<u>0</u>	<u>-40°C to +150°C</u>
1	<u>-40°C to +125°C</u>
<u>2</u>	<u>-40°C to +105°C</u>
<u>3</u>	<u>-40°C to +85°C</u>


Table 1: Part Operating Temperature Grades

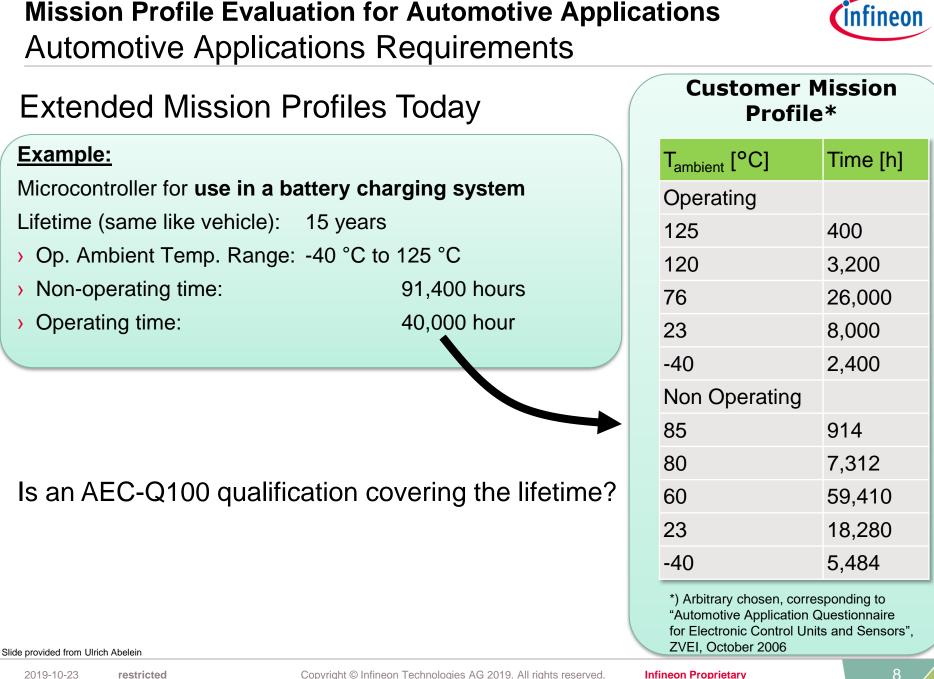
The endpoint test temperatures for hot and cold test, if required for that stress test, must be equivalent to those specified for the particular grade. If accounting for junction heating during powered test, hot test endpoint test temperature can be greater.

For Test Group B – Accelerated Lifetime Simulation Tests: High Temperature Operating Life (HTOL), Early Life Failure Rate (ELFR) and NVM Endurance, Data Retention, and Operational Life (EDR), the junction temperature of the device during stressing should be equal to or greater than the hot temperature for that grade.

Mission Profile Evaluation for Automotive Applications Mission Profile Definition

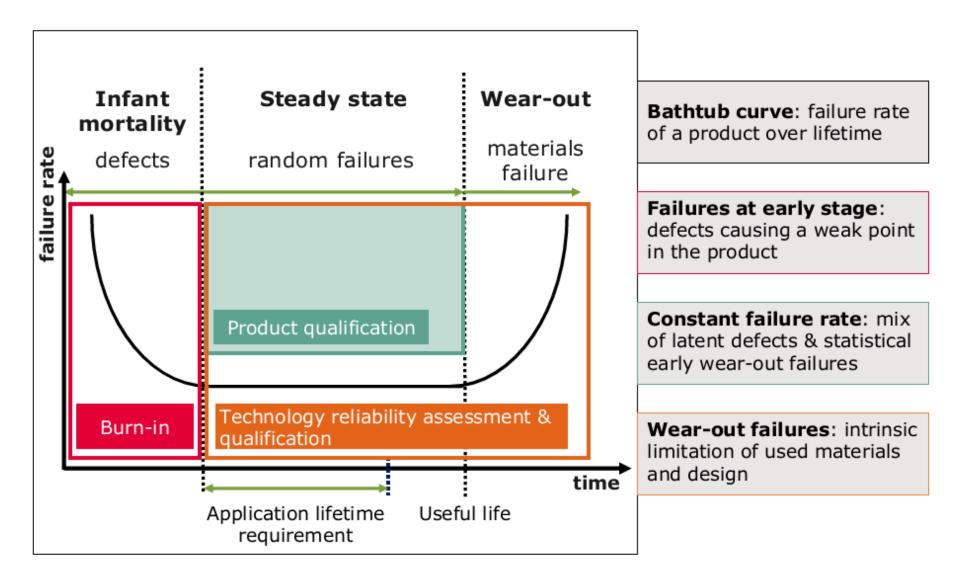
A mission profile is a description of all conditions, in which the IC will be exposed in a defined application.

Slide provided from Ulrich Abelein


Mission Profile Evaluation for Automotive Applications Automotive Applications Requirements

Basic lifetime requirements for passenger vehicles today						
Lifetime 15 years						
Operation Time	8.000 hours					
Mileage	300.000 Km					

Please note:


- > These requirements apply to the (passenger) vehicle in a more or less private use
- > Subsystems and ECUs within the vehicle already today face different lifetime requirements.
- > A different user profile may result in totally different lifetime requirements. Commonly, sources for that kind of requirements are commercial vehicles and trucks.

2019-10-23 restricted Copyright © Infineon Technologies AG 2019. All rights reserved.

Mission Profile Evaluation for Automotive Applications Reliability Basics

Slide provided from Ulrich Abelein

Mission Profile Evaluation for Automotive Applications Acceleration Models

> A first glimpse at lifetime models

Conversion of test time at test conditions to equivalent application time at use conditions: $t_{use} = AF \cdot t_{stress}$ AF is called acceleration factor

Stressor	Model	Equation
Temperature Thermal processes	Arrhenius	$AF(T) = \exp\left\{\frac{Ea}{kB}\left(\frac{1}{Tuse} - \frac{1}{Tstress}\right)\right\}$
Temperature Cycling Thermal mechanical processes	Coffin-Manson	$AF(\Delta T) = \left(\frac{\Delta T stress}{\Delta T use}\right)^B$
Temperature and Humidity Corrosion	Peck	$AF(T, RH) = \exp\left\{\frac{Ea}{kB}\left(\frac{1}{Tuse} - \frac{1}{Tstress}\right)\right\} \cdot \left(\frac{RHstress}{RHuse}\right)^{p}$

E _a : apparent thermal activation energy	T : temperature	(K)	ΔT : temperature interval (°C or K)
k _B : Boltzmann constant	V : voltage	(V)	B = Coffin-Manson coefficient
= 8,617 · 10 ⁻⁵ eV/K	RH: relative humidity	(%)	p = Peck's factor

Arrhenius Model

- Assumption
 - An IC-device shall run 8000h operation hours in 15 years in a given mission profile
- **Problem Statement**

 - The IC device shows an increase of the T_j of 15°C at V_{max}.
 What is the minimum equivalent stress time when running HTSL and HTOL stress tests at $T_{amb} = 150^{\circ}C$ (oven temperature) in order to cover the given mission profile?

HTSL	Ambient temperature	Operating hours			Equivalent Stress time,	Equivalent Stress time,	
	temperature	nours	temperature	temperature	(E _a =0.7eV)	(E _a =1.0 eV)	
	T _{amb} [°C]	t_op [h]	Tj = T _{amb} [°C] + ∆Tj	T _{stress} = T _{oven} [°C]	t_stress [h]	t_stress [h]	
	-20	832	-5	150	0	0	
	35	2333.6	50	150	6	0	
	95	3750.4	110	150	505	214	
	120	833.6	135	150	412	304	
	140	250.4	155	150	313	345	
Non	13	123400	13	150	13	0	
Operating	sum	8000+123400 = 131400			1249	864	

- After cool $E_a = 0.7 eV$ (typical gate oxide failure mechanism); $E_a = 1.0 eV$ (package effects) down
- Consider passive time up to 15 years at an average temperature, e.g. 13°C

HTSL = High Temperature Storage Life

Mission Profile Evaluation for Automotive Applications Examples of Mission Profile Evaluation

Arrhenius Model

- $E_a = 0.7 eV$ (typical)

HTOL

Ambient temperature	Operating- hours	Calculated temperature	Stress temperature	Equivalent Stress time, \underline{E}_a =0.7eV
T _a [°C]	t _{op} [h]	Ţ _i [°C]	<u>Tistress</u> [°C]	t _{stress} [h]
-20	832	-5	165	0
35	2333.6	50	165	3
95	3750.4	110	165	262
120	833.6	135	165	213
140	250.4	155	165	162
Σ	8000		T _{oven} = 150°C	641

Ambient temperature	Operating-hours	Calculated temperature	Stress temperature	Equivalent Stress time, Ea=0.7eV
T _a [°C]	t _{op} [h]	Tj [°C]	Tjstress [°C]	t _{stress} [h]
-20	832	-5	150	0
35	2333.6	50	150	6
95	3750.4	110	150	505
120	833.6	135	150	412
140	250.4	155	150	313
Σ	8000		T _{oven} = 135°C	1237

HTOL = High Temperature Operating Life

2019-10-23 restricted

> Sensibility Analysis

Activation E		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.25	1.5
HTOL at T _a = 150°C	Total Equivalent	2923	2015	1453	1080	823	641	509	411	338	221	156
HTOL at T j = 150°C	Stress time [h]	3526	2671	2115	1727	1446	1237	1078	957	864	715	640

- Most of known failure mechanisms
- Robustness margin

Mission Profile Evaluation for Automotive Applications Examples of Mission Profile Evaluation

> Coffin Manson

- Mission profile arbitrary chosen, corresponding to "Automotive Application Questionnaire for Electronic Control Units and Sensors", ZVEI, October 2006
- TC test runs within -55°C and 150°C
- ΔTj in operation is 15°C
- 11000 cycles (number of engine on/off cycles over 15 years of use, 2 cold starts per day

			Coffin-Manson Coefficient					
Operation- hours [%]	Delta-T₀p [°C]	Amount of cycles	2	3	4	5	6	
21	30	2310	49.5	7.2	1.1	0.2	0.0	
41	50	4510	268.3	65.4	16.0	3.9	0.9	
27	70	2970	346.3	118.2	40.4	13.8	4.7	
11	90	1210	233.2	102.4	45.0	19.7	8.7	
	Σ	11000	897	293	102	38	14	

Table A7.1: Basic Calculations for AEC-Q100 Stress Test Conditions and Durations (continued)

Extract AEC Q100

Acceleration Model Calculated Test Q100 Test Stress Peck Loading Mission Profile Input Stress Test Model Parameters Conditions (all temperatures in K, not in ℃) Duration Duration $t_u = 131,400 \text{ hr}$ (average on/off time over 15 yr of use) Hallberg-Peck <u>p = 3</u> $RH_1 = 85\%$ (Peck exponent, 3 is to be used (relative $T_{t} = 53 hr$ $RH_{u} = 74\%$ for bond pad corrosion) Highly humidity in test $A_{\ell} =$ $\left(\frac{T_{u}}{T_{u}}-\frac{T_{t}}{T_{t}}\right)$ (average relative RH. Accelerated environment) $t_{u} = \frac{t_{u}}{t_{u}}$ Humidity humidity in use $E_{a} = 0.8 \text{ eV}$ Steam 96 hr (Option 2) (activation energy; 0.8 eV is to be environment) A_{f} Test <u>T</u>t = 130 ℃ Also applicable for Temperature used for bond pad corrosion) (HAST) (ambient Humidity Bias (THB) and Unbiased T_u = 32°C temperature in Humidity Steam Test (UHST). k_B = 8.61733 x 10⁻⁵ eV/K (average temperature test environment) See Notes. in use environment: (Boltzmann's Constant) 9% @ 87℃ - time on and 91% @ 27°C - time off)

- > Acceleration models well known over 30 years
- > Challenges for applying acceleration models to new technologies
 - Cu wires (AEC 006)
- > Accurate computational methods, e.g. cohesive finite element simulations.

Increasing reliability knowledge is striving for quality!

Mission Profile Evaluation for Automotive Applications

Thank you!

Copyright © Infineon Technologies AG 2019. All rights reserved. Infineon Proprietary

Part of your life. Part of tomorrow.

