Yuri Freeman

Tantalum and Niobium-Based Capacitors

Science, Technology, and Applications

Electronic Components

D Springer

Tantalum Capacitors in Space Applications

Y. Freeman

October 2018

Efficiency

Charge time ≤ 8s

Entropy

Fig. 1.2 TEM image of the amorphous anodic oxide film formed on crystalline tantalum (the while spots represent individual atoms)

Entropy (instability) increases with dielectric thickness (voltage)

Entropy

Fig. 1.14 SEM image of the anodic oxide film

F-Tech and SBDS

F-Tech

(verified on every production lot)

100% Simulated Breakdown Screening (SBDS)

Crystallization will happen, but this can occur in 100 hours or 100 years

De-rating

 $\frac{t_1}{t_2} = \left(\frac{V_2}{V_1}\right)^n exp\left[\frac{E_a}{kT}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$

 $\mathbf{V}_{50}/\mathbf{V} \approx \mathbf{10}$

Fig. 3.19 MnO₂ tantalum capacitors: D-case 4.7 µF, 50 V (*left*), and A-case 4.7 µF, 25 V (*right*)

Hi-Rel and COTS vs. Commercial (Automotive)

The Capacitance Company
REVIEI
CHARGED.

	MIL-PRF-55365 T-Level	MIL-PRF-55365	сотѕ	Commercial	
KEMET Series	409/419/429/492	409/419/429/492	497*	490/491	
DPA	x				
100% X-ray	X				
Group C Testing	X				
+3 Std Dev Screening	X				
Established Relaibility	B, C, D	B, C, D	B, C		
Surge Current	X	X	Х		
Mil Maintenance	X	X		Auton	 notive: moisture resistance
F-TECH			optional		
SBDS			optional	15	or Property and the other division of
			Made in		
			USA		Ta-Ta2O5-Cathode

Make "New Space" with reliable parts

Cost Reduction

Fig. 3.3 Breakage of the tantalum anode sintered with 50,000 $\mu C/g$ tantalum powder and formed to 75 V

Anomalous Charge Current (ACC) Bake out 125 C for 24 h plus two Pb-free reflow

Fig. 3.54 I(t) response to one pulse, V(t), applied at -200 °C to a W-case 470 μ F -6.3 V hybrid (a) and pure in situ (b) polymer tantalum capacitors

Fig. 3.34 BDV vs. formation voltage in tantalum capacitors with F-Tech anode and either slurry PEDOT, in situ PEDOT, or MnO₂ cathode

JES 2014 - record number of citations

Effects of Moisture

Negative

Fig. 3.49 Moisture-related failures in PHS tantalam capacitors: popcorn effect (a), delamination of the external carbon and silver layers (b), silver migration (c), and tin whiskers (d)

Positive

ACC Control vs. New with Improved Anode dV/dt = 120 V/s, V = 0.8 RV, T = 0° C

99%

95%

90%

80%

50%

30%

20%

10%

5%

1% - 0.1

Normal Percentile

Current at 28.00V during Ramp Testing at 0°C. T540D156M035. Batch 10A. 10 pcs.

Evolution of Tantalum Capacitors

Fig. 4 FSR and maximum working voltage in different types of tantalum capacitors

PHS: on par with Wets in Voltage, 10x-100x lower ESR, MIL Qual

Conclusions

- Entropy (thermodynamic instability) of amorphous Ta₂O₅ increases with voltage (thickness of the dielectric). Advanced technologies like F-Tech/SBDS stabilize the dielectric, screen hidden defects, and provide high reliability to higher voltage parts.
- 50% de-rating of Ta caps cuts efficiency 90%, approaching efficiency of ceramic caps.
 20% de-rating of Ta caps with advanced technologies provides high efficiency and high reliability plus non-ignition failure mode in Polymer caps.
- Only parts with established reliability (Hi-Rel and special COTS) are recommended for the space application. Commercial (automotive) parts can vary materials and processes, increasing risk of failure in space application.
- Low/no ACC and high reliability in higher voltage Polymer parts can be achieved by improvements in all the layers of the basic capacitor structure (not just Poly) instead of de-rating 50+% and losing 90+% efficiency.

