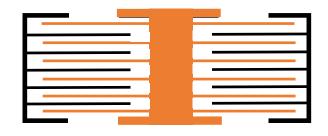
Miniaturization and Advances of Bulk Head Mounted EMI Filters:

Material, Process, Design

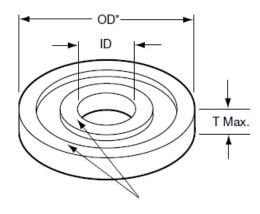
R. Demcko, R. Edily

AVX Corporation
One AVX Boulevard
Fountain Inn, S.C. 29644 USA
Ron.Demcko@avx.com

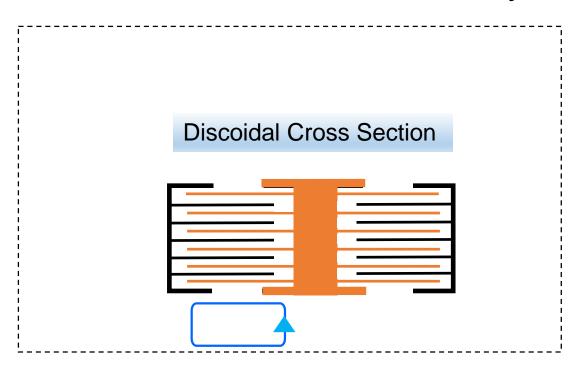
<u>Outline</u>

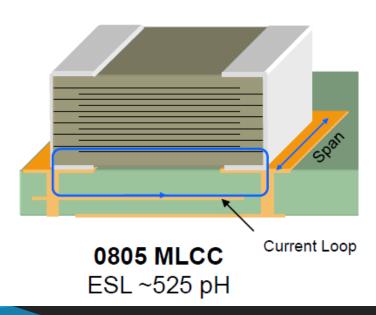

- Filter Designs
- Performance

Miniature Filters & Trends


Summary

Building block = Discoidal insert

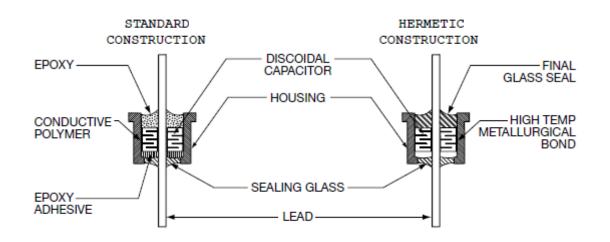


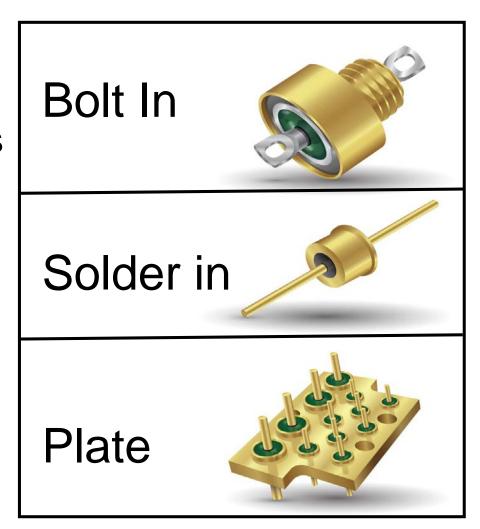

Discoidal Cross Section

Terminations

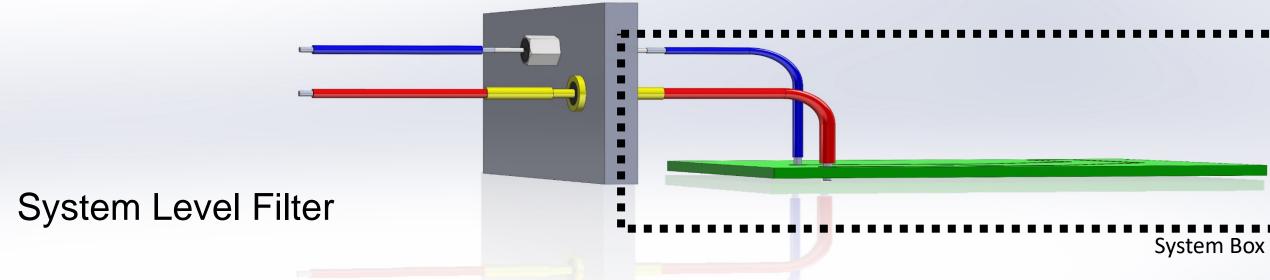
Discoidal inserts are inherently low inductance vs MLCCs

MLCC advances impact on inserts:


Smaller size

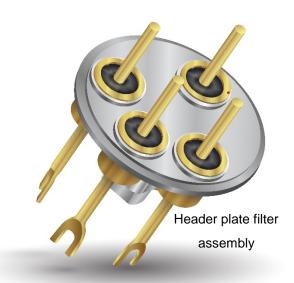

More complex patterns

Increased CV



Discoidal used to create 3 Bulk Head styles

Typical use:



Ideal configuration / efficiency

Impacted positively by MLCC progress

General Characteristics

- Hermetic & Non Hermetic
- DC to 26Ghz range
- L,C structure based
- Installation temperatures to +400c
- Operating ranges -55c to +200c
- Commercial, Military & Space

Bulk Head Filter configurations:

Filter Type	Schematic Symbol				
Capacitor	<u></u>				
Inductor	00				
Wire	· · ·				
T Configured	o-m - m-o				
Pi Configured	<u>a</u> TTo				
L-C	<u>+</u> -				
C-L	\$\bar{\bar{\pi}}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Transient Clamp	• <u>‡</u>				

Bolt In

Solder in

Plate

Design:

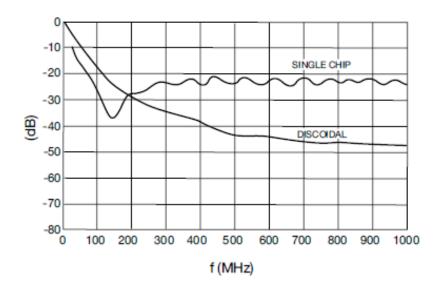
MLCC Discoidal plus optional magnetics

MLCC advances yield:

- smaller inserts
- Higher capacitance values

Design:

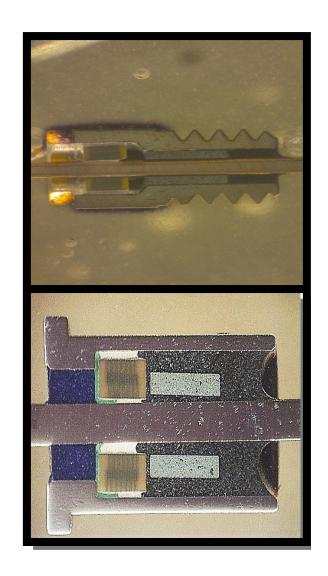
MLCC advances enable:

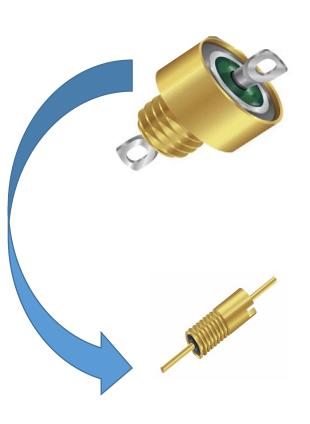

smaller discoidal - smaller bulk head filter higher frequency response

Traditional C Filter

Reduced size filter

Low loss discoidal inserts improved response over MLCC based filters


INSERTION LOSS


Downsized Filter Performance

- Identical Electrical Responses
- 64% less weight
- 45% less foot print
- 70dB notch still available
- >/ 100v and up to 5amp available

Accelerated progress expected

MLCC advances impact on inserts:

Filter Type	Dia. mm	Max Cap nf	Current	Voltage	Frequency	Weight g	Volume cc	Configuration
Miniature	3.05	50	5 amp	200 v	10mhz –	0.0948	0.0204	C, L
Solder in					10 Ghz			
Miniature	2.67	27	5 amp	200 v	10mhz –	0.1434	0.0225	C, L, Pi
Bolt in					10 Ghz			
Sub-miniature	2.67	27	2.5 amp	200 v	10mhz –	0.0796	0.0145	C, L
Solder in					10 Ghz			
Sub-miniature	2.18	5	3 amp	200 v	10mhz –	0.0902	0.0139	C, L, <i>Pi</i>
Bolt in					10 Ghz			
Micro-Miniature	1.90	5	1.5 amp	200 v	10mhz –	0.0336	0.0056	C, L
Solder in					10 Ghz			
Micro-Miniature	1.85	5	3 amp	200 v	10mhz –	0.0591	0.0097	C, L, <i>Pi</i>
Bolt in					10 Ghz			

Small Filter performance comparison

			Attenuation (dB) @ Mhz					
Filter Type & Siz	e (dia.)	Current (a)	10	30	100	300	1000	10,000
Small standard	4.19 mm	5	15		34		50	60
Miniature	3.05 mm	5	15	22	35	45	55	60
Sub Miniature	2.67 mm	2.5	15	22	35	45	55	60
Micro Miniature	1.9 mm	1.5	15	22	35	45	55	60

Bulk Head Filter Future trends:

Increased CV / Smaller Size

Higher & Lowered Q response efforts

Multiple Response Filter

Pulse capable – slow & fast (ESD) waveform ratings

Novel Configurations – Clamp >2kA 8x20us < 5cc volume

Summary

- MLCC progress will continue to drive discoidal capacitors
- Small discoidal capacitors will enable miniature Bulk Head Filters
- Bulk Head filters packaging will broaden smaller to big
- Filter plate assemblies will become more viable options
- Filter functions expanding multi response to <u>clamping</u>